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Abstract

Dark stars are astronomical objects with heavy masses so high that no

mass and even no light should escape. In this paper we apply the dynamics

of m theory to such objects. First, the equations of Evans-Eckardt theory

are shown to be identical to those of Lagrangian m theory. Then, escape

velocities are computed for Newtonian theory, special relativity and gen-

erally relativistic m theory. A new view of de�ection of light is developed,

based on m theory. In contrast to special relativity, light quanta with a

rest mass can be described by m theory. For the �rst time, it becomes pos-

sible to compute the trajectories of light by standard dynamical methods.

As a result, the interaction of light with spacetime is di�erent than known

for ordinary matter. While for ordinary matter we have m≈1, light can

be described consistently with an m value of the �golden ratio� m=1.618.

This has implications for the structure of photons.

Keywords: ECE theory, equations of motion, dark star, escape velocity, light
de�ection.

1 Introduction

In astronomy, the opinion has prevailed that a black hole is located in the center
of each galaxy. The mass of such objects is at least one million sun masses.
Therefore, we can speak of very heavy objects. In the common understanding,
such objects are black holes, which means that nothing can escape from their
surfaces (if they exist), not even light. By ECE theory [1�3] and other authors [4,
5] has been shown that the mathematical description of black holes is erroneous.
Therefore, the question is open again, whether anything can escape from such
massive stars.
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Within the framework of ECE theory, m theory has been developed for
describing e�ects of general relativity in a centrally symmetric spacetime [7].
Space is deformed around masses, as is assumed in Einstein's theory, but the
description is based on the generally relativistic line element, not on the Einstein
�eld equation. Thus, generally relativistic dynamics can be applied, and there
is no restriction to only one �eld-generating object as in Einstein's theory. The
motion of the S2 star around Sagittarius A*, the center of our galaxy, has been
successfully described in this way [8]. In earlier papers, we developed the equa-
tions of Evans-Eckardt theory by requesting conservation of energy and angular
momentum in a centrally symmetric spacetime. Here, we give arguments that
the resulting equations of motion are identical to those of Lagrangian m theory.
This was not clear in our preceding work.

An often-discussed question is, which objects can escape from a heavy star.
In standard theory an event horizon is purported to exist, although this is an
artifact of the Schwarzschild solution for black holes. In m theory, such an event
horizon does not exist a priori (although it could be constructed by the theory
arti�cially [10]), and escape velocities alone are required to decide if an object
can move away from a heavy mass or not. This even holds for light.

In section 2, we derive the escape velocities for Newtonian theory, special
relativity and m theory. We consider the special case of light, for which special
relativity cannot be applied, if a rest mass of light quanta exists. In contrast,
m theory is able to handle this case for m(r) > 1. We show that for light the
value of m must be quite large, it is the �golden ratio� 1.61803. In section 3 we
demonstrate how Lagrangian m theory is able to predict the trajectories of light.
We are able to compute the de�ection angle of light grazing the sun. This is the
�rst time the dynamical motion of light can be computed directly from a theory
of relativistic dynamics. The result is in agreement with the experimental value
within 2%.

We follow the original accompanying notes 1-4 of this UFT paper (numbered
originally no. 438) by Myron Evans. His comment on the dynamical compu-
tation of light de�ection in note 438(4) was the last scienti�c statement he left
us: This theory can now be improved by solving Eqs. [(6-7)] without using the
Newtonian approximation at all. This would be an extension of the calculations
carried out in note 438(3) for the dark star.

2 Orbits around a heavy mass

2.1 Equations of motion

Two approaches have been used for describing the equations of motion in m
theory: the Lagrangian method and the Evans-Eckardt equations [9]. The latter
are based on conservation of energy and angular momentum in a 2-dimensional
space with polar coordinates. The conservation equations are

dH

dt
= 0,

dL

dt
= 0 (1)

for the Hamiltonian H and angular momentum L. From these equations follow
the equations of motion which can be formulated in two coordinate systems of
m space: the rest system of the orbiting mass (r1, φ) and the observer system
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(r, φ), where r1 and r are the radial coordinates and φ is the azimuthal angle.
Here we use the observer coordinates exclusively. Then the Hamiltonian of m
theory is

H = m(r)γ mc2 −
mMG

√
m(r)

r
, (2)

and the angular momentum is

L =
γ mr2 φ̇

m(r)
, (3)

with central mass M , orbiting mass m, Newton's gravitational constant G and
the radial m function m(r). The generalized γ factor of m theory is

γ =

(
m(r)− ṙ2 + r2φ̇2

c2 m(r)

)−1/2
. (4)

Alternatively, the equations of motion can be derived from the the Lagrangian

L = −mc
2

γ
+
mMG

√
m(r)

r
(5)

with the same γ factor.
In UFT 420 [9] it was found that both methods lead to slightly di�erent

equations of motion concerning the relativistic terms. We stated that the Evans-
Eckardt approach is more fundamental than the Lagrange method because the
Lagrangian has to be de�ned suitably so that the correct equations of motion
are obtained and, consequently, has a certain ambiguity. For this paper, we
have worked out the Evans-Eckardt equations of motion by a di�erent code and
found that the results are identical to those of the Lagrange method. In both
cases, Eqs. (1) were evaluated. Currently, the reason for the di�ering result is
not clear. It may be a coding error or a problem of the computer algebra system
itself. Since both the Lagrangian and Evans-Eckardt approach describe the same
physical situation, it can be argued that the results of both methods should
be identical. Therefore, we use the results of the Euler-Lagrange equations
throughout this paper. This relativises some statements of preceding papers
where the di�erences between both methods were discussed and interpreted in
a certain way, for example in form of constraints for the m function.
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The equations of motion for an object moving in general-relativistic m space are:

φ̈ =φ̇ ṙ

(
1

m (r)

dm (r)

dr

(
2− GM

2γ c2 r
√

m (r)

)

+
GM

γ c2 r2
√

m (r)
− 2

r

)
,

r̈ =
dm (r)

dr

(
−2φ̇

2
r2

m (r)
+ c2

(
m (r)− 3

2γ2

)
+

GM

2γ3r
√

m(r)

+
GMφ̇2r

2γ c2m(r)3/2

)

− GM φ̇2

γ c2
√

m (r)
−
GM

√
m (r)

γ3 r2
+ φ̇2 r.

(6)

(7)

They are independent of the orbiting mass m and turn into the Newtonian
equations for c→∞, m(r)→ 1.

2.2 Escape velocity

The escape velocity of a mass m from a heavy gravitating massM is found from
the conservation of energy:

Ti + Ui = Tf + Uf (8)

with kinetic energy T , potential energy U and indices i and f for initial and �nal
states. In the Newtonian case, a mass m has the initial kinetic and potential
energy

Ti =
1

2
mv2, (9)

Ui = −mMG

r
, (10)

and after escaping from the central mass it is v = 0, r →∞, i.e.,

Tf = Uf = 0. (11)

Therefore, the escape velocity is

vesc =

(
2MG

r0

)1/2

, (12)

where the escaping mass starts at the radius r0. For a dark star, we have

M →∞, (13)

so the escape velocity approaches in�nity. In Newtonian dynamics, no object
can escape a dark star.
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In special relativity, it is

Ti + Ui = γmc2 − mMG

r
, (14)

Tf + Uf = mc2, (15)

because the rest energy enters the calculation. The γ factor is

γ =

(
1− v2

c2

)−1/2
. (16)

From Eq. (8) we have with start radius r0:

(γ − 1)mc2 =
mMG

r0
. (17)

The left-hand side is kinetic energy. It follows

γ = 1 +
MG

c2r0
. (18)

In the dark star with M →∞ we have

MG

c2r0
→∞, (19)

so

γ →∞, (20)

which means

vesc → c. (21)

The escape velocity in special relativity is the speed of light. However, at the
speed of light, the relativistic total energy is

E = γmc2 →∞, (22)

so in�nite total energy is needed to escape from a dark star in the theory of
special relativity.

In m theory, the energy balance equation (8) reads

m(r)γmc2 −m(r)1/2
mMG

r
= m(r)1/2mc2 (23)

with the γ factor

γ =

(
m(r)− v2

c2 m(r)

)−1/2
. (24)

On the left-hand side of Eq. (23) we have to insert the initial radius r0. On the
right-hand side, r approaches in�nity. Assuming there an asymptotic value m∞
for the m function, we obtain

m(r0)γmc2 −m(r0)1/2
mMG

r0
= m 1/2

∞ mc2, (25)

5



which, resolved for γ, gives

γ =
GM

m(r0)1/2c2r0
+

m
1/2

∞

m(r0)
. (26)

This is the generalization of (18), which was derived for special relativity. In a
dark star with M →∞, we have γ →∞, so from (24):

m(r)→ v2

c2m(r)
(27)

or

v → m(r)c. (28)

In cases where m(r)>1, superluminal motion is possible, but for leaving a dark
star, the required total energy

E = γm(r)mc2 (29)

becomes in�nite. So, no object can leave a dark star in m theory. If there were
an event horizon, we would have

m(r) = 0 (30)

and, consequently

vesc = 0 (31)

which makes no sense. The Einsteinian event horizon of a black hole, described
by

m(r) = 1− rS
r

(32)

with Schwarzschild radius rS , is meaningless, because at r = rS we have vesc = 0.

2.3 Gravitational light de�ection

In ECE theory, light quanta have a small rest mass. Therefore, they can be
analyze and modeled using gravitational theories. The conventional theory of
de�ection of light due to gravitation is based on the Newtonian velocity

v2N = MG

(
2

R0
− 1

a

)
, (33)

where R0 is the radius of the sun and a the half-right latitude of a hyperbolic
orbit. Note that it is de�ned a < 0 for hyperbolic orbits. The Newtonian theory
is summarized in Note 4 of this paper and was extended to m theory in UFT
419 [8]. In earlier papers (UFT 406 [6]), the orbital velocity of Newtonian theory
vN was related to the relativistic velocity v, which is the observed value, via a
relativistic factor γN of special relativity:

v2 =
v2N

1− v2
N

c2

(34)
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which can be written as

v = γNvN (35)

with

γN =

(
1− v2N

c2

)−1/2
. (36)

It was shown [6] that, for Newtonian theory,

v2N =
MG

R0
(1 + ε). (37)

For light grazing the sun, the eccentricity ε is

ε >> 1, (38)

therefore

ε ≈ R0v
2
N

MG
. (39)

Then the angle of light de�ection at its closest approach to the sun is

∆ψN ≈
2

ε
=

2MG

R0v2N
, (40)

where R0 is the radius of the sun. This value of Newtonian theory is only half
the value observed experimentally. From (34) follows

v2N =
v2

1 + v2

c2

. (41)

For the limit v → c we have

v2N →
c2

2
(42)

and

∆ψexp =
4MG

R0c2
, (43)

which is the experimentally observed value.
m theory can be used to explain the deviation of the factor γN (Eq. (36))

from the γ factor (16) of special relativity. In m theory, the general-relativistic
γ factor is, according to Eq. (24),

γ =

(
m(r)− v2

c2 m(r)

)−1/2
. (44)

To allow the case v = c, we must have m(r)>1, otherwise the γ factor would
diverge for v → c. To ful�ll Eq. (35) for the case v = c, we must require with
the γ factor of m theory:

γ2(v → c) v2(v → c) = γ2N(v → c) v2N(v → c), (45)
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which means γ = 1 and leads to

c2

m− 1
m

=
c2

2(1− 1
2 )

(46)

or

m− 1

m
= 1, (47)

where we have assumed that m(r) is constant. This is a quadratic equation for
m with solutions

m1,2 =
1

2

(
1±
√

5
)
, (48)

numerically:

m1 = −0.61803, m2 = 1.61803, (49)

which is exactly the golden ratio Φ:

m1 = −(Φ− 1), m2 = Φ. (50)

This is a startling result. m2 can be inserted into the Lagrange equation set
(6-7). The results are discussed in the next section.

For photons, this means γ = 1 in m theory. Then the energy of a photon
with rest mass m0 is

E = ~ω = m(r)γm0c
2 = Φm0c

2. (51)

The rest energy m0c
2 is increased by a factor of Φ and the rest mass depends

on the wave energy ~ω. The photon momentum is

p =
E

c
= Φm0c. (52)

The photon with mass �ts into the frame of general-relativistic theory, for ex-
ample via the Proca equation [2,3]. In contrast to special relativity, there is no
problem with the γ factor for v → c.

3 Computational results and discussion

First, we compare escape velocities of di�erent theories in dependence of the
central mass M . The mass of the sun is about 2 · 1030 kg. The graph in Fig. 1
starts at about this value. The escape velocities are quite small there, compared
to the velocity of light of about 3 ·108 m/s. It is seen that this region is reached
for M > 1036 kg which is the order of magnitude of Sagittarius A*, the center
of the milky way. For the three theories, the escape velocities are

vNewton =

√
2GM

r
, (53)

vs−r =
c

c2r +GM

√
GM(2c2r +GM)

c2r +GM
, (54)

vm−theory = m(r)
c

c2r +GM

√
GM(2c2r +GM)

c2r +GM
(55)

8



These are obtained from Eqs. (12), (18) and (26), where the γ factor has been
inserted and the equations been resolved for v. All velocities are calculated for
the doubled radius of the sun: r = 2 · 6.95508 · 108 m. In case of m theory, we
have assumed a constant value of m(r) = m∞ = 1.1. Therefore, we obtain a
limit v > c for M → ∞. The value of special relativity appraches c, and the
Newtonian escape velocity increases beyond all limits.

The second graph shows the escape radii in dependence of the central mass,
each computed for the escape velocity v = c. The escape radii are obtained
from the inverted formulas (53-55):

rNewton =
2GM

c2
, (56)

rs−r = 0, (57)

rm−theory =
GM

c2

(
±m(r)

√
m(r)2 − 1− 1

)
. (58)

There are two solutions for m theory. As can be seen from Fig. 2, The Newtonian
value grows in�nitely, as does the positive solution of m theory. The other
solution is always negative and unphysical. Obviously, there is always an escape
radius for v = c in m theory, as far as m>1. For m<1, the square root term
becomes imaginary, and there is no escape at this velocity. For special relativity,
there is always resc = 0, i.e., the mass could escape from any radius, but this
would require in�nite energy. For m theory, we have shown that m>1 and,
according to Eq. (28), light cannot escape from any heavy star, as long as the
local value of m(r) does not diminish the e�ective m below unity.

The subsequent results were obtained by solving the Lagrangian equations
of motion (6-7). The orbits around a heavy mass were studied, where the mass
has been increased stepwise. We used a model system with arbitrary units and
an exponential m(r) as in earlier papers. The initial values were kept the same
for all calculations. For not too heavy masses M , the orbit is near to an ellipse.
Increasing M means growing precession e�ects. Both can be seen from Fig.
3. When M is increased further, the orbiting mass spirals into the center, see
Fig. 4. It arrives gently with v = 0. This behaviour is obtained from m theory
only. Such examples were already considered in earlier papers. The central mass
attracts matter with no return like a black hole. Light, however, could escape,
if the space contraction through the mass is so high that there is an e�ective
value of the m function of m<1. With mlight ≈ 1.6 the m value of the heavy
mass would have to be m < 0.4 at the surface.

By application of the equations of motion (6-7), it is possible to compute the
trajectories of photons by a classical theory. With special relativity, this is not
possible, because the γ factor diverges for v → c. Within m theory, however,
v = c is possible for m>1. The scales within such calculations require special
adaptations because the masses and velocities are quite high. For computing
the orbit of the S2 star, we had used adapted units (see Table 3 of UFT 375).
Here we applied the same units. The length, for example, is measured in 10−9m.
Using the golden ratio value of m from Eq. (49), we obtain the orbit graphed
in Fig. 5. Please notice that the photon moves from right to left, the sun is at
x = 0. Since the angle of de�ection is so small, the y axis had to be adapted.
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m ∆ψ

1.28 4.29 · 10−6

1.43 6.14 · 10−6

1.57 7.99 · 10−6

1.61803 8.65 · 10−6

1.78 11.0 · 10−6

exp. 8.48 · 10−6

Table 1: De�ection angle of light ∆ψ for several values of m function.

The de�ection angle is approximately determined by

∆ψ = −∆y

∆x
, (59)

where ∆x is measured from x = 0. The result is precise when the negative x
value is far enough away from the center. The computed dependence of the
de�ection angle on x is shown in Fig. 6. The asymptotic value is 8.65 · 10−6

radians, compared to the experimental value of 8.48 · 10−6. This is coincidence
within 2% and shows very good conformance. To see how this value depends
on the m value, we have varied the m value in a wider range as presented in
Table 1. It is seen that there is a signi�cant variation of ∆ψ with m. The orbit
calculation of a photon grazing the sun impressively proves the m value, having
been computed analytically for an e�ective constant m function.

From earlier results of m theory (for example for the S2 star), we know that
we have to expect m≈1 for ordinary matter. The value of m for photons is far
above this range. Since our numerical calculation has impressively con�rmed
the analytical result, we are lead to the conclusion that light (or electromagnetic
radiation in general) shows a di�erent interaction with the spacetime or back-
ground �eld, compared to dense matter. This may be explained by the fact that
the mass of the photon is expanded in any form over space. In electrodynam-
ics, light is often modeled by plane waves which are even in�nitely extended in
theory. A spatial restriction is possible, leading to wave packets as in quantum
mechanics. For photons, space appears �less dense� than for ordinary matter.
All of these results have been obtained from a classical theory, without quantum
e�ects being taken into account.
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Figure 1: Escape velocities from di�erent theories.
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Figure 2: Escape radii from di�erent theories.

Figure 3: Orbits around a heavy mass, modest M values.
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Figure 4: Orbits around a heavy mass, high M values.

Figure 5: Orbit of light grazing the sun, v = c, moving from right to left (please
notice the y scale).
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Figure 6: De�ection angle ∆ψ = −∆y/∆x of light grazing the sun, moving from
right to left.
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