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4 Graphical description and discussion

The classical theory developed in this paper is depicted by some graphs which
should make clear the meaning of the precession parameter x for the orbits. The
conical section with precession is defined by

[e%

T 1+t cos(z 0) (O7)

r
as stated in Eq.(8) of section 2. For x = 1 the well known conical sections are
obtained as shown in Fig. 1. All these types of curves are governed by the
parameter €. Choosing the additional parameter x different from unity leads to
modifications of the conical sections and can result in drastic changes as will be
seen later.

Starting with € = 0 we obtain a circle which is not affected by x. Giving €
a value between 0 and 1 leads to ellipses. Setting the factor x # 1 leads to a
precession of the ellipse where the direction of precession depends on the choice
of x < 1orx > 1. Significant deviations from unity lead to change in the minor
axis which becomes identical to the major axis, see Fig. 2. For z = 2 the curve
is deformed and no more identifyable as an ellipse. Therefore we call this type
of curves generated by Eq.(97) generalized conical sections.

The “generalization” effect of parabolas can be seen in Fig. 3. For values of
x very different from unity the curves are more like spirals or hyperbolas than
parabolas. For generalized hyperbolas (Fig. 4) the curves are distorted in a
similar way. In all plots only the angular range of # between 0 and 27 is shown
in order not to overload the diagrams. A special case appears for hyperbolas
with x = 0.3 as graphed in Fig. 5. Here the orbits are shown for a broader
range of angles. Between —7m and 7 the orbit is a circle, showing that even
closed orbits for € > 1 are possible for generalized conical sections. For larger
angles some kinds of loops are observeable.

All this reminds to the alleged behaviour of “black holes” of the deprecated
Einstein theory. If the central gravitational mass is very massive as reported
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for the centers of galaxies by astronomers, we can assume singificant deviations
of x from unity, leading for example to the orbits of Fig. 5. Deflection of light
can be described by the same Eq.(97). Therefore we can imagine the that light
in the vicinity of such massive stars is bent completely around the center and
is trapped. This would result in invisibility from outside, and the massive star
would behave similar as a “black hole”. All this is described on the basis of
classical physics.

To develop this interpretation further, we know from the solar system that
the innermost planet, Mercury, shows the highest precession of the elliptic orbit
(although very small in size). This leads to the assumption that the value of
the precession parameter x deviates the more from unity the nearer a planet
moves around the center. For a highly ellptic orbit this means that = may
depend on the orbital radius. We have performed model calculations assuming
the dependence

1

x(r) :1:|:m.

(98)
This function is graphed in Fig. 6. It only deviates significantly from unity for

r < 1. We have accounted for both possibilities x > 1 and x < 1 by both signs
n (98). With this approach Eq.(97) takes the form

" T+ ecos(z(r) - 0)

T (99)

which is a transcendent equation, i.e. we cannot calculate the radius for a given
angle 6 directly. Instead we have implemented a numerical iterative scheme to
obtain the dependence r(f) numerically. The results for an ellipse are shown
in Fig. 7. It is seen that the aphelion radius is not affected but there are
significant deviations from the elliptic orbit for the perihelion. The precession
in both directions comes out for both signs in z(r) as expected, however there
is an additional distortion of the ellipse in the near-perihelion range. This gives
rise to the supposition that other deviations of planetary orbits than elliptical
precession may be explainable by the behaviour of generalized conical sections.
When the radius dependence of z is assumed to be more far reaching than in
Eq.(99), calculations have shown that completely irregular orbits are possible.
A lot of unexplored physics is hidden in the simple form of the equation for
generalized conical sections.
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Figure 1: The different types of conical sections.  Figure 2: Generalized ellipses with ¢ = 0.5.
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Figure 3: Generalized parabolas (e = 1.0). Figure 4: Generalized hyperbolas with € = 1.5.
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Figure 5: Special generalized hyperbola with Figure 6: A model for an r dependent z(r).
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Figure 7: Elliptical orbits with variable function z(r).









