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ABSTRACT 

Orbital precession and gravitational deflection are explained straightforwardly using 

classical lagrangian dynamics in the non relativistic limit. Therefore these phenomena cannot 

be used as a test of Einsteinian general relativity (EGR), now known clearly to be riddled 

with basic errors. Planetary precession can be interpreted as a Coriolis force using elementary 

methods in which total angular momentum is conserved. The force law for planetary 

precession and gravitational deflection is a sum of two terms, inverse square and inverse 

cubed in r. This result is derived in two independent ways and the effect of precession 

calculated on the Keplerian equation for orbital linear velocity. Gravitational deflection 

theory is developed using the same methods and it is shown that light can be trapped by a 

finite mass. It is well known that there are no black holes in nature. 
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1. INTRODUCTION 

In the obsolete literature of the twentieth century it was claimed erroneously that 

there existed phenomena of astronomy that could be used to test Einsteinian general relativity 

(EGR). It is now accepted that EGR is riddled with errors (1 - 10}, and it has become well 

known that criticisms ofEGR have existed for nearly a century, an era of pseudoscience in 

cos mology. This is an example of Langmuir's "pathological science" at its worst. The ECE 

theory on the other hand is rigorously correct and has been accepted as the new natural 

philosophy. Currently it exists alongside the old pseudoscience. If natural philosophy is to 

cont inue to be a rational subject, pseudoscience mut be recognized as such and replaced by a 

plausible theory based on correct mathematics. ECE is one such theory, it is a generally 

covariant unified field theory based on correct geometry. In its non relativistic limit it 

red uces to classical dynamics . 

In Section 2, elementary Lagrangian dynamics { 11} are used to give a 

straightforward explanation of planetary precession in terms of a Coriolis force, and 

considerations given to the orbital velocity and angular momentum of a precessing elliptical 

orbit. Elementary kinematics are used to derive the force law for a precessing elliptical orbit, 

the result being consistently the same as that from Lagrangian dynamics. In section 3 the 

lagrangian theory is developed in detail, and the Keplerian equation for orbital linear velocity 

derived. The effect of precession on this velocity is calculated classically, giving an equation 

that can be tested with data. Finally the same methods are used to calculate gravitational 

deflection classically, for example light deflection due to gravitation. In Section 4 some 

graphical results are given of the precessing conical section equation used in this simple 

lagrangian theory, and it is shown that light can be trapped by a finite mass M. It is well 

known that the "black hole" theory based on EGR is riddled with numerous errors { 1 - 10}, 



and thi s nc'' theory is a much simpler, much clearer, and above all $Cientific explanation of 

orbiting light being trapped by a finite mass. 

:2 . FO RCE. LINEAR VELOCITY AND ANGULAR MOMENTUM 

where 

Consider the elementary equation { 11}: 
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is the linear momentum of a mass m. Then the forces in the fixed and rotating frames are 

related by: 
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is the Coriolis force. In the preceding paper UFT214 (www.aias.us) it was shown that 
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for a precessing elliptical orbit described experimentally by the conical section equation: 
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Here lcL is the latus rectum (right latitude), E is the eccentricity, x the precession 

constant and k a constant. The plane polar coordinates are ( r , e ). In Eqs. ( b) and 

cl ) the unit vectors of the fixed and rotating frames are defined in UFT214: 
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The constant k is defined by : 
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where the mass m orbits a mass M. The Newton constant is G and the half right latitude is 

dcl!necl by : 
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Therefore orbital precess ion can be explained on the classical level by the Coriolis force: 
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in which case there is no precession. This phenomenon cmmot be used as a test ofEGR, 

\\·hic h is riddled with errors as is well known {1- 10}. 
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and this difference vanishes when there is no precession, i.e when: 
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This is again a classical explanation of precession. 



The total angular momentum is a constant of motion in this lagrangian analysis 

f II ]. In the fi xed frame the total angular momentum is: 
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where { 11 ) : 
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wh ich is the same resul t as the lagrangian method { 11 }, but derived using the elementary 

kine mati cs ol'planar rotat ion. In the moving frame the total angular momentum is: 
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and again thi s is the same result as the lagrangian method. Both Land L are constants of 
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mution so 
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l'hc torques associated with Land L - -~ 

can be defined as: 
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~md so there is an extra torque clue to precession. In ECE theory this torque is due to 

spacetime torsion. lt is plausible to assume that the extra precessional torque is caused by the 

well known rotation of the sun. 
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This is a general result as is well known. For a precessing elliptical orbit oftype ( " ): 
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and the force law reduces to: 
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The same force law is obtoined very elegantly from the following equation of 

lograngian dynamics t 1 1] !'or planar orbits of any type : l 
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so : 

---
;mel Eq . ( '-t l ) is given directly, QED. The same force law is also true for any type of 

gravitational deflection, and so EGR is not needed. lt is incorrect and obsolete. 



3. SOME DETAILS OF THE LAGRANGIAN THEORY, KEPLERTAN VELOCITY AND 

DEFLECTION THEORY 

For a planar orbit the coordinate system is tbe cylindrical polar system in a 

plane ( r, 8 ). The Lagrangia n is ( 11}: 

-(ss) 
\\'here T is the kinetic energy and U the potential energy. From Section 2 the kinetic energy is: 
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,\ssume that the potential energy depends only on r: 
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Thl· tvlo Eu ler Lagrange: equations are: 
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The total angular momentum is conserved, and is a constant of motion defined by: 
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ln consequence : • 
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and the angular velocity is: 
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The Hamiltonian is tl1e total energy E, which is also a constant of motion, and which is also 

conserved: 

Fro m Eq s. ( s~) and c S~ ) it may be shown {11 } that: 
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where the force is defin ed bv : 

No te that Eq. ( ~ S) is true for any planar orbit. So Lagrangian dynamics are more general 

tha n Newtonian dynami cs . which is true only for an elliptical orbi t. 

As shown in Section 2 the force law for a precessing elliptical orbit is given by 

Lagrangian dynamics as : ) 
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lt is convenient to express thi s in terms of a constant k to be determined: 
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This express· . IOn CClll be rewritten . ClS. 
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The constant total angular momentum is· 

and the potential energy is: 

The Hamiltonian is: 

so: 

Now use: 

from which the amrle (l ~ ' is defined as 
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Therefo re classical Lagrangia11 dy namics gives a precessing orbit, QED. The Newtonian orbit 

is given by: 

x~ i · 

This theory can be used to find the effect of precession on the linear orbital 

velocity: 

from which: 

From Section 2: 

and using: 

it is found that: 
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\\hen 
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It is seen that the precession ol· the perihelion produces an additional term in 1 I ( , and 
'). 

mod iiies the other two terms by a multiplicative [acto r X- . Thi s is again a simple 

classical description without the need for EGR. Eq. ( ~0) can be tested experimentally. 

The theory or de nect ion by gravitation can be developed very simply on the 

ci<Issica l level by rewriting [q. ( 

--

~ ) as: 
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I hl' precession ol' the pnihelion is given by: 
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4 Graphical description and discussion

The classical theory developed in this paper is depicted by some graphs which
should make clear the meaning of the precession parameter x for the orbits. The
conical section with precession is de�ned by

r =
α

1 + ε cos(x θ)
(97)

as stated in Eq.(8) of section 2. For x = 1 the well known conical sections are
obtained as shown in Fig. 1. All these types of curves are governed by the
parameter ε. Choosing the additional parameter x di�erent from unity leads to
modi�cations of the conical sections and can result in drastic changes as will be
seen later.

Starting with ε = 0 we obtain a circle which is not a�ected by x. Giving ε
a value between 0 and 1 leads to ellipses. Setting the factor x 6= 1 leads to a
precession of the ellipse where the direction of precession depends on the choice
of x < 1 or x > 1. Signi�cant deviations from unity lead to change in the minor
axis which becomes identical to the major axis, see Fig. 2. For x = 2 the curve
is deformed and no more identifyable as an ellipse. Therefore we call this type
of curves generated by Eq.(97) generalized conical sections.

The �generalization� e�ect of parabolas can be seen in Fig. 3. For values of
x very di�erent from unity the curves are more like spirals or hyperbolas than
parabolas. For generalized hyperbolas (Fig. 4) the curves are distorted in a
similar way. In all plots only the angular range of θ between 0 and 2π is shown
in order not to overload the diagrams. A special case appears for hyperbolas
with x = 0.3 as graphed in Fig. 5. Here the orbits are shown for a broader
range of angles. Between −π and π the orbit is a circle, showing that even
closed orbits for ε > 1 are possible for generalized conical sections. For larger
angles some kinds of loops are observeable.

All this reminds to the alleged behaviour of �black holes� of the deprecated
Einstein theory. If the central gravitational mass is very massive as reported

∗email: emyrone@aol.com
†email: horsteck@aol.com
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for the centers of galaxies by astronomers, we can assume singi�cant deviations
of x from unity, leading for example to the orbits of Fig. 5. De�ection of light
can be described by the same Eq.(97). Therefore we can imagine the that light
in the vicinity of such massive stars is bent completely around the center and
is trapped. This would result in invisibility from outside, and the massive star
would behave similar as a �black hole�. All this is described on the basis of
classical physics.

To develop this interpretation further, we know from the solar system that
the innermost planet, Mercury, shows the highest precession of the elliptic orbit
(although very small in size). This leads to the assumption that the value of
the precession parameter x deviates the more from unity the nearer a planet
moves around the center. For a highly ellptic orbit this means that x may
depend on the orbital radius. We have performed model calculations assuming
the dependence

x(r) = 1± 1

(r + 1)6
. (98)

This function is graphed in Fig. 6. It only deviates signi�cantly from unity for
r < 1. We have accounted for both possibilities x > 1 and x < 1 by both signs
in (98). With this approach Eq.(97) takes the form

r =
α

1 + ε cos(x(r) · θ)
(99)

which is a transcendent equation, i.e. we cannot calculate the radius for a given
angle θ directly. Instead we have implemented a numerical iterative scheme to
obtain the dependence r(θ) numerically. The results for an ellipse are shown
in Fig. 7. It is seen that the aphelion radius is not a�ected but there are
signi�cant deviations from the elliptic orbit for the perihelion. The precession
in both directions comes out for both signs in x(r) as expected, however there
is an additional distortion of the ellipse in the near-perihelion range. This gives
rise to the supposition that other deviations of planetary orbits than elliptical
precession may be explainable by the behaviour of generalized conical sections.
When the radius dependence of x is assumed to be more far reaching than in
Eq.(99), calculations have shown that completely irregular orbits are possible.
A lot of unexplored physics is hidden in the simple form of the equation for
generalized conical sections.
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Figure 1: The di�erent types of conical sections. Figure 2: Generalized ellipses with ε = 0.5.

Figure 3: Generalized parabolas (ε = 1.0). Figure 4: Generalized hyperbolas with ε = 1.5.
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Figure 5: Special generalized hyperbola with
ε = 1.5, x = 0.3.

Figure 6: A model for an r dependent x(r).

Figure 7: Elliptical orbits with variable function x(r).
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4 GRAPHICAL DESCRJPTJON AND DISCUSSION 

Section by Dr. Horst Eckardt 
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