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Abstract

In the Lorentz gauge, Maxwell’s equations provide four polarizations which can be interpreted as one time-like
photon, two transverse space-like photons and one longitudinal space-like photon. It is shown that these solutions
indicate the existence of novel longitudinal electric and magnetic fields, denoted Ey; and By respectively, and which
can be represented in terms of delta functions travelling at the speed of light. Thus Ey; and By; are novel, physically
meaningful fields which are manifestly covariant and which are consistent, in the Lorentz gauge, with special

relativity.

Introduction

It is well known that Maxwell’s equations are
Lorentz covariant and are consistent with the
theory of special relativity. The electromagnetic
field is an example of a gauge field (as opposed to
a spinor field [1]) and its electric and magnetic
components are customarily described as being
invariant to the type of gauge used in its descrip-
tion, for example the Coulomb and Lorentz
gauges. In the theory of special relativity, how-
ever, the scalar and vector potentials of the electro-
magnetic field form a four vector in pseudo-
Euclidean space-time, and this imposes a general
and fundamental restriction. The Coulomb gauge
is not manifestly covariant [1] and is not rigorously
consistent with special relativity. The Lorentz
gauge, however, is manifestly covariant and may
be consistent with special relativity. This leads to
a little known but profound difficulty in the theory
of electromagnetism which is described below, fol-
lowing Ryder [1].

* Corresponding author.

The electromagnetic field is usually assumed to
have only two independent physically meaningful
components, its right and left circular polariza-
tions, which define the helicity of the photon, a
“massless particle”. These polarizations are trans-
verse to the propagation axis of the plane wave.
However, the electromagnetic field is described
covariantly by a four-vector potential A,, with
one time-like component and three space-like com-
ponents, as for any four vector. It is therefore
necessary to choose two of these as “physical”
and discard the other two as “unphysical”, This
procedure loses manifest covariance [1]. If mani-
fest covariance is retained rigorously as a funda-
mental physical law, all four components of 4,
must be physically meaningful, and 4, is defined
properly only in a gauge which retains all four
components in this way. As shown by Ryder [I],
this is the Lorentz gauge. In the Coulomb gauge
only two components of 4, are defined since the
scalar potential (the time-like part of 4,) is set to
zero. The Coulomb gauge is therefore inconsistent
with special relativity. This is easily seen from
the fact that in special relativity, one must have
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(see Appendix):
¢ = 4| (1)

where ¢ is the scalar potential and |4| the vector
potential’s magnitude. In the Coulomb gauge,
however, ¢ =0 and |4|# 0, so that Eq. (1) is
immediately violated. In the Lorentz gauge:

(9;,A“:%%+V-A=O (2)
and condition (1) is not necessarily violated. Equa-
tions (1) and (2) must be satisfied simultaneously
by ¢ and A in this gauge. Eq. (1) is a consequence of
the fact that A4, is a four vector in Minkowski
space, and of the fact that the electromagnetic
wave always travels at the speed of light c.
Equation (1) is therefore a fundamental pseudo-
Euclidean (i.e. geometrical) requirement of special
relativity, but Eq. (2) is an assumption first made by
Lorentz. This assumption defines the Lorentz gauge.

Any theory of electromagnetic radiation which is
inconsistent with Eq. (1) must be inconsistent with
the fundamentals of special relativity and should be
discarded.

However, considerations of the Poincaré group
[1] in the zero mass limit, clearly discussed in ref. 1,
pp. S7-66, show that the state of a massless particle
such as a photon is described by one number ), the
ratio of W# to P¥; where W* is the Pauli—-Lubanski
pseudo-vector and where P, = i§/9x* is the gen-
erator of translations. The number A has the dimen-
sions of angular momentum and is the helicity. With
additional considerations of parity, the helicity takes
on two values [1]; A and —X. We arrive at the well
known result that the photon is a boson with helicity
1 and —1. Photons are then customarily described as
being in right and left circularly polarized states with
A = =1, but not A = 0, since the latter is disallowed
by the properties of the Poincaré group in special
relativity.

In order to retain manifest covariance in the
Lorentz gauge, however (or in any gauge that satis-
fies Eq. (1)), we must have four photon polarization
states, and not two, i.e. we must consider all four
components of 4, in the description of the electro-
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magnetic field, and regard all four as being physi-
cally meaningful. The only way out of this
quandary is to realize that helicity can be related
to photon polarization states in more than one way,
l.e. there can be only two helicities for the photon,
but these two can be related in more than one way
to the four, manifestly covariant, states of polari-
zation emerging from the d’Alembert equation

04, =0 (3)

in the Lorentz gauge [1]. Solutions of the d’Alem-
bert equation are also solutions of the Maxwell
equations in the Lorentz gauge, and are given by
Ryder [1]. The first way of relating polarizations
from the d’Alembert equation to the photon helicity
is the well known one of accepting the transverse
space-like photons as physically meaningful. There
1s, however, a second way which is introduced for the
first time in this paper, and which shows that the
Maxwell equations in the Lonentz gauge allow physi-
cally meaningful longitudinal solutions; a phase inde-
pendent magnetic field, By, in the propagation axis,
and a phase independent electric field E;; in the same
axis. These fields have been introduced elsewhere
[2—5] and are shown in this paper to be rigorously
consistent with special relativity and manifest
covariance. They also provide the solution to the
fundamental quandary that the massless gauge field
can have four polarizations but only two helicities.

In this paper, the characteristics of the Ej and
By, fields are summarized in terms of creation and
annihilation operators of the quantized field, and it
is recalled [2—-5] that the presence of Ej and By
does not affect the energy density of the electro-
magnetic wave. It is shown that this property is
precisely that obtained from the Gupta—Bleuler
condition in the quantization of the massless field
in the Lorentz gauge. The Gupta—Bleuler condition
also shows [1] that a combination of the time-like
and longitudinal space-like photons of 4, in the
Lorentz gauge is a physically meaningful entity.
The latter is identified precisely with the definitions
of Ej; and By in quantum field theory.

It is also recalled from previous work [2,3] that
the magnetic field operator By in the quantized
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field is directly proportional to the angular momen-
tum operator J of the photon and thus to the two
photon helicities. This completes the demonstra-
tion that the By field can be identified with the
time-like and longitudinal space-like polarizations
of the electromagnetic field and that the Bj; field
can be related to the two allowed photon helicities.
It therefore becomes clear that the By field links
two of the allowed photon polarizations (time-like
and longitudinal space-like) to the two allowed
photon helicities. The transverse right and left cir-
cular polarizations link the other two photon
polarizations to the photon helicities. This conclu-
sion is sketched as follows:

Time-like polarization (0)

Longitudinal space-like polarization (3)

N
Photon helicities
A==£1

7

Left transverse space-like polarization (1)

Right transverse space-like polarization (2)

We have therefore solved the quandary of the
massless gauge field’s four polarizations and two
helicities through the existence of a hitherto
unidentified, but physically meaningful, By, field.
The Ej; field completes the picture in that its exist-
ence is implied by that of the By through our pre-
viously derived relation [5]:

BHXEZEHXB (4)

where B(r,t) and E(r,t) are the usual oscillating
fields of the electromagnetic wave.

The paper closes with a brief discussion of the
physical phenomena expected from the existence of
BH and EII'

Longitudinal and time-like photons

It is necessary to recall, following ref. 1, pp. 148—
153, that the quantization of the electromagnetic
field in the Lorentz gauge proceeds through the
Gupta—Bleuler condition:

8, A"y = 0 (5)

437

where A(*)* is now an operator and where |3)) is an
eigenstate of the photon field. The condition (5)
replaces the d’Alembertian operator condition

04, =0 (6)

I

for the reasons described by Ryder [1]. The Gupta-
Bleuler condition leads to

@ (k) — a® (k)] ly) = 0 (7

where & and 4* are annihilation Operators ¢or-
responding to the time-like polarization (super-
script  (0)) and the longitudinal space-like
polarization (superscript (3)). In turn, condition
(7) leads to the expectation value equality

(WlaO* (k)a® (k)Y = (laD* (k)P (k) [w)  (8)

for any physical state |1) of the quantized electro-
magnetic field in the Lorentz gauge. The equality
{8) contains products of annihilation and creation
operators. Two points are important in this con-
text: (i) there are four photon polarization states,
labeled ¢ to € (ii) the time-like and longitudinal
space-like photons do not contribute to the electro-
magnetic energy density, but a combination, or
admixture, of time-like and longitudinal space-
like photons is a physically meaningful state [1].
The contributions of the state (0) and (3) photons
to the electomagnetic energy density cancel, but,
nevertheless, admixtures of these photon states
are physically meaningful. This is the standard
interpretation [1] of the Gupta—Bleuler condition
of the quantized field, a condition which is derived,
in turn, from the quantized d’Alembertian.

We have shown elsewhere [5] that there exist mag-
netic and electric field operators of the quantized
electromagnetic field defined by

- ~(1) ~(2 ~(2) ~(1
By =} By(aay"" — aa ")k o)

: A(1) A2 A(2) A{1
Ey = —%Eo(asl)ag " ag )a(l )+)k

where k (not to be confused with the wave vector) is
a unit axial vector for the magnetic field and a unit
polar vector for the electric field, directed in both
cases in the axis of propagation, Z, of the labora-
tory frame (X, Y, Z). Here By; and Ej; respectively
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are magnetic and electric field strength scalar
amplitudes, and 4 and a* are annihilation and
creation operators. Both fields [5] are longitudinal
solutions in free space of Maxwell’s equations
and both are defined in terms of the operator

(c’z(l”&(zz)Jr - &gz) 1)+) whose expectation value
between photon states is 2:

(wlai s — aPal My = (10)

Furthermore, we have shown that By and Ej do
not contribute to the electromagnetic energy
density [5]. It is therefore reasonable to write the
equation

(la® (k)a® ($1a®* (k)2

— (lala?

—(laa™t — a{"aP|y)
(11)

which defines the novel fields B;; and Ey; in terms of
the expectation values between photon eigenstates
of the operator products corresponding to time-
like and longitudinal space-like annihilation and
creation operators of the quantized field in the
Lorentz gauge.

It is also possible to show [5] that the Stokes
operator S; 16] is defined as

Yk)) = (k) [w)

A(Z)&(])-i—l'l/))

2 .
8= @aPr - el 12)
and therefore the expectation values (11) are iden-
tified as defining this well known operator, whose
expectation value is the third Stokes parameter of
the circularly polarized electromagnetic field.

The present authors have also shown [5] that the
classical fields Ey; and By (expectation values of Eyy
and By in photon states) can be described in terms
of delta functions as

B Iy
B = OkJ J "= dkdz
—00 J—00

= Byk Jw §(Z — ct)dZ (13)

It 1s possible to show that this is precisely what is
expected from the solution given by Ryder [1] for
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the quantized d’Alembertian operator condition
(6), a solution which is given [1] as

~ d3k 3 (\)
A,(Z) = j—— E €
w(2) 2021V ko = ¥

x (@Y (k)e™* 4 aW (k)e™ ] (14)

This is clearly a sum over the four possible polari-
zations in Minkowski four space, a solution which
is manifestly covariant. It is clear from Eq. (14) that
if it were possible to write the annihilation and
creation operators as

aM (k) = a™ (0) exp(ik Zo) (15a)
aN (k) = aM(0) exp(—ikZp) (15b)

the solution becomes a simple sum over delta func-
tions, because, by definition

1 lk(Z Zy)
e J dk (16)

is the Dirac delta function. However, it is always
possible to write Eq. (15) because by definition
[4,7]:

aM (1) = aM(0) exp(—iwe) (17a)
aM* (1) = aV*(0) exp(+iwt) (17b)

8Z - Zy) =

where w is the angular frequency at an instant 7. As
discussed, for example, by Kielich et al. [§], it is
always possible to make the replacement

-7,

f:T 1e. ZOZ—C[ (18)

so that, using the definition k¢ = w, Eqgs. (15a and b)
become Egs. (17a and b). The solution (14) therefore
becomes a sum over delta functions:

3
4,(2) = zikozkﬁa“’(ow(zo _2)

+ e @M (0)6(Z — Zy)] (19)

This is the most general solution in special relativ-
ity of the quantized d’Alembertian; in other words,
the most general solution for the potential four
vector in relativistic quantum field theory [1]. The
delta function solutions for the scalar potential
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corresponding to Ey; and By have been shown by
the present authors to be delta functions

Y Sz —edz (20)

-0

¢n=¢oj

and the vector potential corresponding to E;; and
By, to be

oo

8(Z — c1)dZ 1)

—00

Ay = AOJ

and clearly, these are special cases of the general
solution (19).

It is concluded that E;; and By are rigorously
consistent with relativistic quantum field theory
in the Lorentz gauge.

The link between polarization and helicity

In this section we address the difficulty in mass-
less gauge field theory that there are four polariza-
tions and two helicities, and show that the difficulty
disappears through the use of the magnetic field
operator I}H.

Using Egs. (9) and (12} it is clear that there is a

relation between By and the third Stokes operator
33 .
B =- Ei;ck (22)
Furthermore, it is well known that the Stokes
operators 3., S5, S5 obey the commutator relations
of angular momentum in quantum field theory [9],
showing that By has the properties of quantized
angular momentum of the electromagnetic wave.
Standard theory [9] shows that

(J.)

(IS5 = (6:) = =

(23)
where &, is the Pauli matrix operator

(0 |
o= (7 3 24

The angular momentum operator J, is defined by

(W|J.|b) = S, (25)
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and using Eq. (24) we obtain
5 J, J

This equation shows that the expectation value
of the longitudinal magnetic field By is the same as
that of J,, the angular momentum operator, between
photon eigenstates |1)), which in turn is the classical
third Stokes parameter multiplied by . The expecta-
tion value of J, is $; units of quantized angular
momentum for any eigenstate |1} of the quantized
field. If the beam were to consist of one photon of
energy Aw, then |) = |1) and (1|J|1) would be the
expectation value of J for one photon. In this case
Bj; would be the magnetic flux density operator of
one photon, whose scalar magnitude we denote Bf)”.

Equation (26) therefore relates By to the helicity
of the photon, because the eigenvalues of the angu-
lar momentum operator J of one photon are M;A,
where M, takes the values of 41 and —~1, but not
Z€ro, in precise analogy with the helicity A.

It is clear therefore, as described in the introduc-
tion, that By; relates the time-like and longitudinal
space-like photon polarizations to the helicity, and
explains the fact that the massless electromagnetic
gauge field has four polarizations but only two
helicities.

Lastly, we recall [5] that the existence of By
implies the existence of E;; through the equation:

BI] X E: E” X B (27)

which was derived from considerations [5) of the
continuity equation [7] linking the electromagnetic
energy density and the Poynting vector in the pres-
ence of By and Ey;. These considerations show [5]
that By; and E;; do not contribute to the electro-
magnetic energy density. This is the precise coun-
terpart of the finding that the hamiltonian operator
in the quantized relativistic field [1] is proportional
to an integral over the sum

3
Z(&()\H&()\) _ ﬁ(0)+d(0)) (28)
A=1

so that the contributions of the longitudinal and
time-like photons cancel, leaving only the contribu-
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tions from the transverse space-like photons,
superscripted (1) and (2) in the sum (28). These
contributions correspond to the right and left
states of the classical oscillating and transvetse
fields E(r,1) and B(r, 1).

Discussion

If By is a physically meaningful field, as
argued in this paper, then it must produce meas-
urable effects. For example, circularly polarized
electromagnetic radiation is able to magnetize
material through the intermediacy of By and
terms to higher order in By;. This is supported by
experimental evidence such as the well known
inverse Faraday effect [10] and the recently
predicted [11] and measured [12] phenomenon of
optical NMR spectroscopy, in which a circularly
polarized visible frequency laser shifts NMR
frequencies through By; and higher order terms in
B;;. However the evidence to date is based on a
small number of experimental investigations and
is incomplete and rather fragmentary. Evans and
co-workers [3,13—15] have suggested a number of
tests for By; based on the classical and semi-classi-
cal descriptions, in which By is proportional simply
to the square root of the laser’s intensity.
(This simple first theory takes no account of statis-
tical effects and effects due to inhomogeneous beam
profiles and scattering and simply treats B as
being “‘equivalent” to a regular magnetostatic
field.) Among the effects due to By are: (1) the
optical Faraday effect; (ii) the optical Zeeman
effect; (iii) optically induced shifts in ESR spectra;
(iv) the optical Cotton—Mouton effect: (v) optically
induced forward—backward birefringence.
Among the effects predicted for the vector
and scalar potentials Ay and ¢y is an optical
Aharonov—Bohm effect. The semi-classical
predictions of most of these and details thereof are
already available in the literature [3,13-15]. There
are probably several other effects due to By; which
have not yet been predicted.
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Appendix: Eq. (1) of the text

In this Appendix we discuss the origin of Eq. (1) of
the text, which shows that in a theory which retains
manifest covariance, the magnitude of the scalar
potential is equal to that of the vector potential.

It is well known that in special relativity, the
divergence of a four vector is invariant under Lor-

entz transformation. In the summation convention:

04!, 0A

5o I“ =zt H (A1)
X i Xp

This condition 15 equivalent in three-dimensional
notation to a continuity equation. Thus, if the
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four potential is defined by

A, =(4,i0) (A2)

Eq. (A1) implies the continuity equation

V- A+ 196 _ constant (A3)
c Ot

(constant = 0 for the Lorentz gauge)

which is the Lorentz condition, Eq. (2) of the text,
defining the Lorentz gauge. The latter is evidently
consistent with special relativity. If, in the Lorentz
gauge, we assume that the scalar potential, ¢, is
zero, then the continuity Eq. (A3) gives the result:

V-A=0 (A4)

which is usually taken to define the Coulomb
gauge. This appears, at this stage of the argu-
ment, still to be consistent with special relativity
and the principle of covariance of physical laws.
However, the four potential is a four vector in
Minkowski space-time, and therefore its four com-
ponents are subject to the restrictions of pseudo-
Euclidean geometry.

To illustrate these, we provide several examples
in this Appendix.

The interval in space-time of special relativity is
well known to be defined by

ds? = 2 — dx? — dy? — d2? (AS)

At the speed of light, ¢, the universal constant, the
interval ds® vanishes. This means that

dr* = dx® 4+ dy? + d2 = Fd (A6),
and if a four vector is defined as

x, = (r, ict) (A7)
then, at the speed of light, we have

dr? = *ds?

|r| = ct (A8)

i.e. the magnitude of the scalar component of the four
vector becomes equal, at the speed of light, to the
magnitude of its vector component.
Note that the continuity equation is obeyed for
all ds’, iee.
19(ct)

Ver+ o = constant (A9)
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This is our first example of the reasoning upon
which we have based Eq. (1) of the text.
Example 2 is the momentum/energy four vector:

JEn
Py = (P)IT) (A10)
whose continuity equation is
1 O(En)
Vep+ = =0 All
Pra g (A1)

At the speed of light, special relativity gives the well
known result

En
lp| = - (Al12)

showing immediately that the magnitude of the

vector part of the four vector becomes equal, as

in our first example, to that of the scalar part.
Example 3 is the current density four vector

J, = (J,icp)

— (pw, ipc) (A13)
whose continuity equation is
dp
Viid+—=
+ 5 0 (A14)
and, at the speed of light, it is clear that
l=c |ov|=|=pc (A15)

Example 4 is the electromagnetic energy density
four vector

U,= (S,l—(;)

in which S'is the Poynting vector and U the electro-
magnetic energy density. Its continuity equation is
the well known

95400
C

(A16)

5o =0 (A17)
and at the speed of light, it is clear that

U
1§ =~ (A18)

Since electromagnetic radiation always travels at
the speed of light, Eq. (A18) is always operative.
This can be confirmed independently by noting
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that the Poynting vector in SI units is defined [9] as
= LE x B*
Ho

and that the electromagnetic energy density is
defined as

(A19)

]
U=%<€0E'E*+%B‘B*) (A20)

Example 5 is the electromagnetic wavevector,
angular frequency four vector:

k= (1,i2) (A21)
whose continuity equation is
1 dw
. S — = A22
V.k+ iy 0 (A22)
and, at the speed of light
Irf == (A23)

which is the usual definition of k in free space.
Again, the scalar part of the four vector is equal
to the magnitude of the vector part. This conclu-
sion is also consistent with the well known (Eq.
(A12)):

En = hw (A24)

Therefore, in each case, there exists a relation at
the speed of light which equates the magnitude of
the space-like part of the four vector to the magni-
tude of the time-like part. :

Since the four potential is a four vector, it must
also obey this relation at the speed of light. Since the
electromagnetic wave always travels in free space at
the speed of light, it follows that in free space

¢ = |A] (A25)

which is Eq. (1) of the text. Clearly, if ¢ = 0, as in
the Coulomb or radiation gauge, then this means
that A must be zero in the Coulomb gauge. If not,
the theory is inconsistent with special relativity.,

It has been shown elsewhere [3,15] that the longi-
tudinal field By of the text obeys the continuity
equation:

oUy

V'BH-F—at— 0

p="hK

(A26)
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where Uy = —By/c (in SI units) is the magnetic
density of the electromagnetic wave. Here
E x E*
By="—"— A27
U= (2E,ci) (A27)
and

1 , OB OB*
= - | EL
0= 2 Foci (JE a & j o1 dt) (A28)

Therefore, there exists the four vector

By, = (B, iUyc) (A29)
and at the speed of light
UIIC = '_BO = |B]I| (A30)

since |By;| can be F By

Importantly, this shows that the concept of By is
consistent with special relativity, as described also
in the text of this paper. This supports the fact that
B,; is physically meaningful, and that E;; is also
physically meaningful.

By and K}y form the four vector

E ,
By, = (Bn, —l%) Eyy, = (Ey, —icBy)
(A31)

in SI units, and at the speed of light is seen that the
scalar and vector components become equal in
magnitude. The continuity equation from Eq.
(A31) is the Maxwell equation
1 8, 0B,
V-By=—=0=V-Ej=— A32
=25 =g (A32)
showing that By, and Ej; obey a Maxwell equation
and are therefore magnetic and electric fields.
Finally, the four-dimensional Laplace equation
is
_ P4y

BToaxt

0% 0 (A33)

which in three dimensions is

1 &
(vz—?a—;),q,‘:o

If we have ¢ = |A| at the speed of light, Eq. (A34)

(A34)
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implies that These equations are the well known equations
| 8% whose solutions are the Liénard—Wiechert poten-
Vi = T57 (A395) tials. Therefore the condition ¢ = |4| is consistent

with these potentials.

184

Vid==——
c? or

(A36)



