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The role of hyperpolarisability in laser enhanced NMR (LENS) spectroscopy is developed for atoms, taking into account
rigorously the combined effect of three angular momenta, L, S, and I. The results show that when there is no resultant
electronic angular momentum in an atom (or diamagnetic molecule) the magnetic electric electric electronic hy-
perpolarisability can mediate the effect of a circularly polarised laser on an NMR spectrum, producing in theory a richly
varied spectrum that depends on g factors controlled by L, § and /.

1. Introduction

The technique of LENS spectroscopy has recently been developed theoretically and experimentally.
LENS is an acronym for “laser enhanced NMR spectroscopy” in which -a circularly polarised laser is
directed into the spinning sample tube of a contemporary NMR spectrometer. As in conventional NMR
there are several possible LENS mechanisms, and the dominant mechanism, clearly, will be determined
by the sample and conditions. This is basically important for the potential use of LENS in the analytical
laboratory, because the rich variety of behaviours expected theoretically combine to produce an easily
recognisable fingerprint for a given sample under a given set of conditions. For example, the following
typify the mechanisms expected theoretically.

(1) In an atom or molecule with net electronic angular momentum, the antisymmetric part of the
electronic polarisability mediates the effect of the circularly polarised laser [1-3]: The expected LENS
shift is controlled by g factors made up of quantum numbers L, S, and I the electronic orbital and spin
angular momentum quantum numbers and the nuclear spin quantum number, respectively. The g
factors may be positive or negative, so that for a given circular polarisation the shifts induced by the
laser may be up frequency or down frequency.

(2) In chiral molecules with or without net electronic angular momentum a magnetic dipole moment
is induced by the electric field of a laser by the Rosenfeld tensor [4, 5].

(3) In achiral molecules with no net electronic angular momentum there is always an electronic
magnetic/electric/electric hyperpolarisability (°8 f,.','('”) which mediates a LENS shift. This mechanism is
developed rigorously in this paper for atoms.

(4) The processes (1)—(3) can occur far from optical resonance, i.e. do not depend on absorption.
If absorption is present [6, 7] we can think of a right or left handed photon from a circularly polarised
laser giving up a unit of angular momentum to the absorbing atom or molecule. This unit of angular
momentum is a magnetic dipole moment which can produce a magnetic field at the nucleus through
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dipole~dipole or Fermi contact interactions, thus shifting the original NMR resonance [6,7] and
providing a characteristic LENS spectrum of the absorbing sample.

Therefore, even when the net electronic angular momentum is quenched [8], it is possible
theoretically for the applied circularly polarised laser of a LENS spectrometer to cause shifts in the
NMR spectrum through the hyperpolarisability or by photon absorption, or in chiral molecules, through
the Rosenfeld tensor. In atoms and molecules with net electronic angular momentum we expect in
addition LENS shifts mediated by the antisymmetric part of the electronic polarisability. The latter
vanishes, however, if there is no net electronic angular momentum. In all cases we expect the laser
induced electronic magnetic dipole moment to produce a magnetic field at the nucleus, causing yet
another type of LENS shift.

Recently, Warren et al. [9, 10] have verified experimentally the basic theoretical expectation of
LENS spectroscopy, that a circularly polarised laser shifts a nuclear magnetic resonance line. It was
demonstrated for the first time that optical radiation far from absorption bands can shift the resonances
in an NMR spectrum without significant heating. It was shown that the LENS shifts are different for
different positions in a molecule, implying, for example, that such local shifts could disperse resonances
from identical amino acids in different positions of a polypeptide chain. A 270 MHz JEOL NMR
spectrometer was used with p-methoxyphenyliminocamphor, a chiral molecule with substantial circular
birefringence. Light at 514 nm was directed in the sample cavity from a Coherent Innova 200 argon ion
laser. At this frequency, the sample showed almost no optical absorption, i.e. the frequency is far from
any optical resonance. The preliminary experimental results of Warren and co-workers [9, 10] show
both bulk and local frequency shifts in solvent and solute resonances alike. The deuterium resonance in
the deuterated chloroform lock signal was also seen to have been affected [9, 10] by the laser radiation,
and the shifts were different in different solvents such as benzene and chloroform. It was shown that
heating effects of the laser could be removed easily and effectively [9, 10] leaving the enhanced LENS
spectrum for a variety of different proton sites: high and low field ring protons, the methoxy protons,
the high and low field methyl protons. Each of these sites showed different LENS shift patterns as a
function of laser power in milliwatts per square centimetre. These patterns were different with and
without the use of a half wave plate in the laser apparatus. These data clearly reveal the presence of
several contributing LENS mechanisms, which in combination produce a LENS spectrum as a function
of laser intensity which characterises the sample clearly and unambiguously. LENS is already useful
therefore in the analytical laboratory provided that the necessary care is taken experimentally to
remove heating artifacts. In this context it may be useful in future to use a piezoelastic modulator
[11, 12] to switch the laser rapidly between linear and circular polarisation, with the aim of allowing for
heating effects precisely. The idea in this context is that the heating of the sample far from optical
resonance would be the same for linear and circular polarisation, whereas the LENS spectrum is
expected only for circular polarisation. The extra LENS signal would be picked up with some device
such as a lock-in amplifier and filtered out from the “noise” caused by sample heating due to the laser.
This would allow the laser intensity to be increased using fairly long duration pulses, possibly in the
millisecond range, the overall aim being to maximise the shifts seen in the LENS spectrum, i.e. to
maximise the dispersion of the original NMR spectrum and to separate closely spaced proton
resonances using the laser.

In this paper we aim to develop rigorously the “beta’” mechanism in atoms, i.e. the LENS spectrum
mediated by the hyperpolarisability tensor (er,.’Z"). The rigorous quantum theory in this case turns out
to be complicated, but with contemporary computers it can be evaluated for given L, S, and I. In
section 2 the background to the theory is given in terms of 9-j symbols. In section 3 the results of
section 2 are developed for an atom in which the beta tensor mediates the effect of the laser on the
nuclear characteristics of the atom. In section 4 the theory is put into a form suitable for implementa-
tion on computers and the major characteristics of the beta mechanism are evaluated.
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2. Background to the rigorous quantum theory

The rigorous quantum theory of the beta mechanism in atoms depends on the appropriate coupling
of quantised atomic angular momenta. The interaction energy is evaluated using the Wigner—Eckart
theorem to separate out the M dependence of the spectrum [13] where M is the azimuthal part of the
resultant (electronic plus nuclear) angular momentum quantum number F. The standard atomic
quantum theory of angular momentum [13-16] reduces the core of the problem to

. F K F
<]1]2FMF|XS(1,2)|]1]2F Mp) = (- n" MF( M, Q M’)(h]zF“X Wit F’ (1)

Here XQ is a compound irreducible tensor operator in the group of all rotations and reflections [13-16].
The compound operator XQ is built up from two operators acting on independent sets of variables in
spaces 1 and 2. The matrix elements of X are constructed between eigenstates (j,j,FM.| and
|j1j,F 'M ) made up of the two angular momentum states j, and j, which couple to form the resultant
angular momentum F, whose azimuthal components are M,.. The Wigner-Eckart—theorem separates
out the rotational properties, (contained in the M, quantum number) using the well known 3-j symbols
[13-16]. The reduced matrix element on the right hand side of eq. (1) evaluates X therefore without
reference to an azimuthal index Q, but only with respect to the index K which signifies the tensor rank
in irreducible spherical representation in the symmetry group of atoms. As usual, the 3-j symbol
depends only on the symmetry properties of the compound operator Xg(1,2), and determines the
selection rules and overall appearance of the LENS spectrum for a particular LENS mechanism. The
angular momentum states ljl'";1> and |j2m}.2) are basis functions of the full rotation group {16]. The
compound operator must be written in irreducible tensor form, and the reduced matrix elements must
be expressed in terms of individual components using the following expression in terms of 9-j symbols
[13-16] the background to which is explained by Silver [16]:

(LA FIIXE, )| jijsF') = (QF + 1)(2F" + 1)(2K +1))""?

].l ]{ kl . k . . k
XV, I kK <]1HT l(1)||]{><12”U 2(2)”]é> » (2)
F F' K

xXf=[T""@Ut)~. (3)

This is the basic equation which we shall implement repeatedly in the following section to evaluate the
appropriate interaction energy between the relevant angular momentum eigenstates.

3. Development of the interaction energy

In the interaction energy of the beta mechanism we are obliged to consider the coupling of several
angular momenta in several spaces. The problem can be reduced, however, to a repeated application of
equations of type (2), equations which are expressed as products of 9-j symbols which can be evaluated
on a computer [17-19].

Consider firstly the isotropic ensemble average [20,21] of the electronic magnetic electric electric
hyperpolarisability of a molecule or atom:

<erj'/:'”>0 = <I~Lil~‘“jm§(e)>o.30 ) (4)
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where u and m® denote respectively electronic electric and magnetic dipole moment components using
tensor netation [21]. Equation (4) is written in the laboratory frame with Cartesian suffices i, j, k. We
define a molecule fixed frame through suffices «, 8 and y and unit vectors e;, e; and e,. Using the
transformation properties of tensors [21] gives

( M I_ij;:) >o = <eiaejﬁeky Mg I-me(ye) >o
— (@)
- é Eijk(saﬂyl‘l’al‘l’ﬂ)m'ye > (5)
where €, and €, are Levi Civita symbols [21]. Furthermore, the axial vector representation [22] of the

antisymmetric electronic polarisability is given by

a'll = aOGaByIJ’a I’Lﬂ ’ (6)

so that the isotropic average (5) can be written as

e

e em 1
<:Bijk“>0=g€ijk o By 5 (7

o0

which involves a scalar product of the antisymmetric polarisability and the magnetic dipole moment,
both defined with respect to the molecule fixed frame. Any scalar product is frame invariant, and we
can back-transform the result (7) to the laboratory frame:

aﬂmff)

e em 1
<Bijkll>0=g€ijkTB0- (8)

The isotropic ensemble average (for example in a liquid or gas) of the beta hyperpolarisability of a
molecule or atom in the laboratory frame does not vanish therefore, and gives rise to a LENS spectrum
through the following theory.

The interaction energy fundamental to the LENS spectrum is a sum [23]

_ m A) p(o N) (0
AEn= =B ) IVB” - m{ B" . )
Here m™ is the nuclear magnetic dipole moment, B the static magnetic flux density generated by the
permanent magnet of an NMR spectrometer, and the quantity IT Ef*) is defined as the antisymmetric part

of the tensor E,E7, where E is the electric field strength in volits per metre of the laser. For a circularly
polarised laser,

Y = 3(EE} — E;EY), (10)
and I1 ff*) vanishes if the laser is linearly polarised or incoherently polarised. It changes sign [24] if the
circular polarisation is switched from left to right. The product II ,(f*) is an antisymmetric second rank
polar tensor, which by fundamental tensor theory [21] can be expressed as an axial vector

oM = e, % . (11)

The theory of the LENS effect due to the beta tensor proceeds by evaluating this interaction energy
quantum mechanically between the appropriate angular momentum eigenstates. The mathematics of
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this procedure is complicated, but the physics of the situation is simple, we are evaluating the effect of
the beta term in the interaction energy on the original NMR resonance due to the other term in eq. (9).
We try to keep the complexity secondary to the physical and chemical principles involved.

Firstly it is necessary to reduce the interaction energy to a form in which it is expressed in terms of
the three atomic angular momenta L, S, and I. This is accomplished using considerations of
fundamental symmetry: motion reversal (T') and parity inversion (P). The antisymmetric polarisability
and magnetic dipole moment both have T negative, P positive symmetries [23, 24] and it is well known
[25] that the electronic magnetic dipole moment can be expressed in terms of the angular momenta L
and S through the scalar gyromagnetic ratio

m® =y (L, +2.002S,) . (12)

On the grounds of P and T symmetry alone it is therefore reasonable to use a similar ansatz for the
axial vector a,“:

al =y (L, +2.0025), (13)

where we have named the scalar 1y, the ‘‘gyroptic ratio” [26]. Note that this assumes that the electronic
spin as well as the orbital angular momentum contributes to the antisymmetric polarisability, and in this
context we recall that electronic spin is not a term which can be taken too literally, it does not actually
imply a spinning object (the electron), but is an outcome of the Dirac equation of relativistic quantum
theory and of the need to describe the results of the Stern—Gerlach experiment. OQur ansatz has implied
that the electronic spin is “polarisable” [27].
The interaction energy (9) for an isotropic ensemble can therefore be written as
Bo

1
AEn=—2 ey ° YeYu{ FMg|L, L, +2.002S, L, +2.002L,S, +2.002’S,S,|F'M ) I\ B”
0

—(FM \m{|F' ML) BY (14)

a sum of five terms, each of which consists of vectors or scalar produces of vectors. The integration
energy must be evaluated between eigenstates made up of quantised angular momenta which couple to
form a resultant angular momentum F. The expression for the interaction energy is therefore

AEn = —Const,{ FMp|LYL2 +2.002SPLY +2.002L 23S + 2.002°SPS 2| F' M)
— Const, ( FM |I®|F'M}) , (15)

in which the circled numbers denote nine angular momentum spaces [13-16] shared out among five
terms. The interaction of these nine spaces in the context of Racah algebra [16] leads to g factors
analogous to the well known Landé factors [13-16], but much more richly structured. All these g
factors can always be expressed, however, in terms of the three atomic angular momentum quantum
numbers L, S, and I. ‘ '

A chain of equations can be constructed as follows, which reduces the expression for the quantised
interaction energy to products of 9-j symbols, symbols which can be reduced, in turn, to simple
numbers using a computer [17-19]. To start the chain consider the quantised angular momentum
coupling between spaces circled 1 and 2 in eq. (15). We have a special case of the general problem
described by eqgs. (1) and (2) of section 2 of evaluating the compound irreducible tensor

X5 =AM ® BF2)h (16)
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using an angular momentum coupling scheme:

=iy tis, (17)
with the following identities

A=L,, B%°=L,, k=1, k=1, k;=0, j, =L, j,=L, j,=L,.

The tensor product & is in our case a scalar or dot product of two rank one vectors, L and L, both in
the Z axis. :

To continue the chain, we must link spaces (D and @ to the other seven spaces circled in eq. (15). It
proves convenient to go about this in the following order:

Siti=Js, X0t=4®B% Ah=L, B=L,,

j4 +j5 =j67 Xk6=Ck4®Dksy deESZ7 DkSELZ’

jr+is=is» X°=EY®F%  EY=L, F%=S§,,

Jio T =iz X =Gho® H*, leoESz’ Hk“ESZ’ (18)

Jitie=iu,  X=X"@XS

j14 +j9:j15, Xk”:Xk”@Xk“’,

Jis i =Jie Xk“’:Xle@Xklz’

Jre Y Jis =J17s Xk = xhie@ [k
This leads to a chain of interlinked expressions which must be used for each of the five terms of eq.

(14). This chain is given in appendix A because of its complexity, and referred to hereafter as eq.
(A.1).

First term in eq. (A.1):

Av=L, B=L, X“=L,L,=L% k=1, k,=1, k,=0,
Cc* =1, D*s=1, X's=1, k,=0, ks=0, k,=0,
Ef=1, Fk=1, xM=1, k,=0, kg=0, ky=0,
Gfo=1, H'uw=1, Xw=1, k=0, k, =0, k,=0,
Xs=L% Xe=1, X'w=1L3, ky=0, k¢=0, k,=0, (=
Xe=L2 Xv=1, XxX's=L2, k=0, ky=0, k=0,
Xs=12 Xve=1, Xxhe=L2 k,s=0, k,=0, k=0,
Xas=L12% I's=1, Xx'v=L2, k=0, k=0, k,=0.
Second term in eq. (A.1):
Al=1, Bf2=1, X =1, k,=0, k,=0, ky,=0,
Ch=3§,, D=L,  X'=S§,L, k,=1, ks=1, k=0,
EY =1, Fre=1, Xt =1 k; =0, kg=0, ko=0

>

~
x
=1

i
|
!
|
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Gro=1, HY =1, Xfe=1, kio=0, k,=0, k,=0,
X =1, X‘=S,L, X“=S,L, k,=0, k,=0, k, =0, (20)
Xte=58,L,, X®=1, X5 =S,L,, k,=0, ky=0, k=0,
Xs=8,L,, Xv=1, Xke=S,L,, ks=0, k,=0, k, =0,
Xhe=S,L,., I's=1, X =8,L,, k,=0, k,=0, k,=
Third term in eq. (A.1):
Aft=1, B* =1, X =1, k,=0, k,=0, k,=0,
Chi=1, D=1,  X%=1, ke=0, ks=0, ke=0,
Ef=1L,, Fle=g5,, X“=1L,S,, k,=1, kg=1, ky=0,
Ghro=1, Hvw=1,  Xxe=1, kip=0, k=0, k=0,
Xha=1, X =1, Xhu=1, ky=0, k=0, k=0, (2
Xhe=1, XY=1,8,, X5=L,S, k,=0, ky=0, k=0,
Xhs=1L,8,, X'=1, X“o=1L,S,, kis=0, k,=0, k=0,
Xhe=p1,s,, I'"=1, X“v=1L,S, k=0, k,=0, k,=0.
Fourth term in eq. (A.1):
Ak =1, B*r =1, Xf=1, k,=0, k,=0, k,=0,
Cch =1, D* =1, Xto=1, k,=0, k;=0, k,=0,
E¥=1, Fre=1, Xko=1, ,=0, kg=0, k=0,
G*vo=S, Hw=S,  X'v=S,5, ko,=1, k,=1, k,=0,
X4 =1, Xt =1, Xfe=1, k,=0, k¢=0, k=0, (22)
Xfu=1, X =1, X5 =1, k,,=0, k=0, k=0,
Xt =1, Xe=8,8,, X“=5,5,, k=0, k,=0, k=0,
Xfe=8 8, I'v=1, Xv=88 . ke=0, k=0, k,=0.
Fifth term in eq. (A.1):
Ah=1, B9=1, X%=1, k=0, k=0, k=0,
| C=1, D*=1, X“=1, k=0, k;=0, k=0,
E=1, Fv=1, X%=1, k=0, k,=0, k,=0,
Gfro=1, HYv=1, X'=1, k,=0, k,=0, k,=0, (23)
X=1, Xe=1, X'w=1, k;,=0, k=0, k,=0,
X=1, x%=1, X=1, k,=0, k=0, k;=0,
Xs=1, Xve=1, Xas=1, k=0, k,=0, k=0,
Xhe=1, I'n=1, X%v=I, k=0, ky=1, k;,=1

In each of the five terms the angular momentum coupling scheme is
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St =5 h=L, j,=L, J=L
Js T Js=Js Ja=S, Js=1L, Jo=1,
J» Yis=Js J, =L, jg=S, Jy=J,
JiotJn=Ji Jm S, Jn=S, Jn=S,
Jitis=Jis =Ly, Jjs=J, Juu=J,, ’ (24)
Jistie=dis, Ju=Jd, Jo=J, Jis=J,,
hstin=hie Jis=J J2=81, Jis=J5
Jietin=hi Jww=Jy Js=1 J;=F,

with the quantum numbers taking the values

L,=L+L, L+L-1, ..., 0,
J=S+L, S+L-1, ..., |S—L|
J=L+S, L+S-1, ..., |[L-5|,
=5+S, S+85-1, ..., 0,
Jo=L,+J, L,+J—1, ... |L -1, (25)
L=J+7, J+7=1, ..., | -1
Li=L+S8, L+S -1, ..., |L,—=S]
F=J,+1, J,+1-1, ..., |l,—1I.
Terms such as (j,||X“¢|| ji,) are evaluated as usual, for example
(]3||L22||j;>=(]3||1||J;>L§=(2J3+1)”2813151,27
(26)

Iy = (I + )21+ 1))%,,.

and so on.

4. Approximations to the rigorous theory

The rigorous theory can be reduced in complexity by suitable approximations using successive links
in the chain (A.1). The first approximation consists of writing eq. (9) as

ind )
AEn, = -mG"BY —mGVBY = —v,J,,BY — yu[,BY (27)

where m$"” is the induced magnetic dipole moment, and assuming that this is proportional to the
angular momentum J,, in the coupling scheme. The component angular momenta of J,, are not

considered in this approximation. In this approximation eq. (9) becomes
AEn, = — B (IIFM |y, 05, + wwi | IFM,) _ (28)

which can be written in terms of Landé factors {28]

AEn, = —B(ZO)MF(gUYe + 8w, (29)
where
=1<F(F+1)+J3(J3+1)—1(1+1)> 30)
Ltr— 2 F(F+1) ’ (
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and

1(F(F+1)+I(1+1)—J,(J; +1)
8127 3 F(F+1) ' (31)
The 3-j symbol in the final component of eq. (A.1) determines the selection rules on the quantum
number M, the azimuthal component of the resultant angular momentum quantum number F. The 3-j
symbol vanishes unless

AM.=0 or *=1. ' (32)
This rule determines the LENS resonance conditions in this approximation through

wp =B (g% + 8ramw) - (33)

where wy is the frequency of the probe radiation in the LENS spectrometer. Even in this first
approximation it can be seen that there are several possible resonance conditions, determined by the
Clebsch Gordan series for F,

F=J,+1,...,|J,~1}. 34
3 3

In our atomic hyperpolarisability theory, therefore, the effect of a circularly polarised laser in the LENS
spectrometer is to shift the original resonance and split it into different lines.

However, we know that the quantum number J; is itself made up of a Clebsch—Gordan series of the
angular momentum quantum numbers J, and §;, as described in the foregoing coupling scheme.
Furthermore, J, and S, are themselves made up of other angular momentum quantum numbers and so
on. It follows that there are many LENS resonances in theory, and with sufficient resolution each of
these should be present in the spectrum.

In the second approximation, therefore, we write eq. (9) as

AEn, = _B(ZO)<12S1 JJIFMFI'Ye(Jzz + 82+ yNIZ]JZSl JJIFMF> > (35)

which consists of three angular momentum quantum numbers in different spaces. It can be shown [29]
that eq. (A.1) then reduces to a sum of three terms [29] involving products of 9-j symbols. The 9-j
symbols can be evaluated computationally [29], and the LENS spectrum can be constructed for any
given I, J, and S,. The expressions for the LENS resonances in this second approximation are given in
appendix B and some results from that appendix are illustrated in figs. (1)—(3), showing that in this
second approximation to eq. {A.1), the effect of the circularly polarised laser is to shift the original
NMR resonance to higher frequency and in theory to split it into several different lines. This is in
qualitative agreement with the available experimental data [9,10], which refer to a large chiral
molecule, not to an atom. To extend the atomic theory of this paper to molecular point groups requires
the implementation of the V, W and X coefficients first devised by Griffith [30]. In this context the 3-j
symbols of atomic theory go over to V coefficients, 6-j symbols to W coefficients, and 9-j symbols to X
coefficients. A clear introduction is given by Silver [16]. Therefore, in order to describe the data
obtained by Warren and co-workers [9,10] the V, W, and X coefficients have to be used for the
appropriate molecular symmetry, which is the chiral C| point group. ‘

However, for readers primarily interested in the analytical consequences of LENS, the appropriate
way forward is clearly empirical, to fingerprint the sample with LENS and to store the fingerprint for
future analytical use. For the LENS dispersion [9, 10] of H resonances in a polypeptide, for example,




166 M.W. Evans | Laser enhanced NMR spectroscopy

LENS SHIFT, SECOND ORDER APPROXIMATION. LENS SHFTS, SECOND ORDER APPROXIMATION.
J3=25,1=05F=2AND3 J3=2365,1=05F=3AND 4.
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Fig. 1. Second order approximation, LENS shift as a func- Fig. 2. Asforfig. 1,),=%;1I=3%. — F=3; , F=4;
tion of the ratio x =y,/y,. J,=4; =4, ——, F=2; ------ ) —e— , 45° base line.

F=3;—- - , 45° base line.

‘this is obviously the practical procedure. The analytical laboratory would probably not attempt to
calculate, for example, a conventional 2-D protein map from Racah algebra. The latter is used in this
and other papers [31] to give a theoretical foundation to the very existence of LENS effects, and these
papers should be used in this spirit.

Recall that the whole structure of eq. (A.1) refers to only one particular mechanism, mediated by
the beta tensor. The latter is non-zero in all atoms and molecules, diamagnetic or paramagnetic. In
atoms and molecules with unquenched electronic angular momentum, however, the antisymmetric
polarisability is also non-zero, and may be dominant in determining the LENS shift and split.

In a chiral molecule, furthermore, there is also the possibility of a magnetic dipole moment being
induced through the Rosenfeld molecular property tensor, a second rank electric dipole/magnetic
dipole tensor [32]

mz(ind) =R;B;= YRJ:('ind) . (36)
(ind

Being a magnetic dipole moment, m{™® is proportional through a scalar to an electronic angular

momentum, and the latter is quantised in general. The interaction energy for the Rosenfeld mechanism
is

AEn3 — _Bg<J(ind)M_(,ind)|’)’RJ(Zind)|.](ind)M_(,ind)) , (37)
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LENS SHFT, SECOND ORDER APPROXIMATION.
J3=461=05F=4ANDS5.

SHIFT,

Fig. 3. As for fig. 1, J,=%; I=1.

, F=4; - ,E=5 - =+ , 45° base line.

which again leads to a theoretical expectation of a LENS shift. We do not go into further details of the
“Rosenfeld mechanism” here, but in a chiral molecule with large optical rotation at a given laser
frequency, this mechanism can probably dominate, or at least be a substantial part of the observed
LENS effect [6, 7). Furthermore, the Rosenfeld tensor is defined as the second partial energy derivative

N 3°H )
Ry = (aE,.aB,. 0’ (38)

where E; and B; are the electric and magnetic components of the laser, respectively, and the
antisymmetric part of the tensor product £;B; does not change sign on switching the laser from left to
right circular polarisation. In consequence the LENS shift due to this particular Rosenfeld mechanism is
always to the up frequency side. This mechanism is not present if the molecule is achiral.

The interested reader is referred to previous papers [1-3,31] for various order of magnitude
estimates from the alpha and beta mechanisms, and to other possibility based on the induction of a
magnetic electronic dipole moment by the laser, an induced dipole moment which sets up a magnetic
field at the nucleus, resulting in a LENS shift. The extra nuclear magnetic field can be induced by Fermi
contact or dipole dipole mechanisms as circumstances allow [31].

The potentially most useful analytical feature of LENS [9, 10] appears to be the fact that the shifts
are site selective, i.e. are different for local H sites in the test molecule [9, 10], with different laser
intensity and solvent dependencies. The adaptation of chemical shift and shielding theory from
conventional NMR [32-34] is another interesting pattern of future research now that the basic LENS
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mechanisms [1-3, 6, 7] have been demonstrated [9, 10] qualitatively. In this paper we have dealt with
one possible mechanism, mediated by the hyperpolarisability beta, and have confined our treatment to
atomic symmetries.

Acknowledgements

The Cornell Theory Center is acknowledged for supporting this work, and receives major funding
from NSF and the State of New York. Professor Warren S. Warren is thanked for many interesting
discussions and for a preprint of ref. {10]. Dr. L.J. Evans is thanked for invaluable help with the SAS
plotting facilities at Cornell Theory Center. The Leverhalme Trust is thanked for the award of a
Fellowship.

Appendix A

The chain of eq. (A.1)
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Appendix B

In the second approximation, the LENS resonance frequency is given by

| 8.l
wR=—;;i, (B.1)

where the second order g factor is

_ (7.(812 +282) + gN')’N)'B(ZO)gsz
(FQF +1)(F+1))!"?

ki

812

which is expressed as follows in terms of 9-j symbols

812 = (LS, LIF|| 1,8, JLIF ) = 3R(2F + 1)(2J, + 1)(28; + 1)'"*

L1 1[hL 1
X I+ 1)L, + D@L+ T 1 0|8 S 0f,
F F 1ilJ, J, 1

82 = (1,8, JLIF||S\ || 1,8, J,1F) = 3k (2F + 1)(2J, + 1)(2J, + 1)'"?

J3 Jy 1 -]2 S, 0
XL, +DVASS+ )RS+ 1 1 oS, S, 1],
' F F 1l|lJ, 1, 1

8y = (LS JIF||I||J,S,J,IF) = V3h(2F + 1)(2J, + 1)(2J, + 1)"/?

J, J; 0], J, 0
X QS+ DU +DQRI+1)H T 1T 1S S 0
F F 11lJ, J; 0
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