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1. INTRODUCTION

In ihis study we interpret the microscopic simulation of flows in a new way,
making use of the flow and property symmetry as embodied in the new principles of
group theory statistical mechanics.

The hydrodynamics of complex flows is a subject which has been based histor-
ically on constitutive equations derived from the fundamental equations of motion in
the classical approximation.}'? This approach "washes out” the microscopic structure
of the fluid, and is forced to ignore the fact that this is generally molecular in nature.
D.J. Evans has shown that the constitutive equations for a molecular (structured) fluid
such as carbon tetrachloride become numerous, complicated, and insoluble within the
reasonable future.®> The many body dynamics are traditionally kept under control by
approximations which not only ignore the existence of molecules but which also lead
to severe contemporary controversy over frame indifference, a problem arising purely
from the constitutive equation methodology.*

The consequencies of ignoring the details of molecular dynamics in fluids under
elongational and shear stress include the following.

1) The constitutive approach remains empirjcal, ¢.¢., ‘Newtonian’ or ‘non-Newtonian’
according to whether the stress / strain relation appears linear or not.

2) Empiricism, as usual, means that the traditional approach is not predictive, but
descriptive, in nature. A general solution of flow in atomic or molecular ensem-
bles requires the fundamental equations of motion in the classical approximation
applied to the many body problem through computer simulation.

3) The constitutive approach misses some fundamental details of the response of
fluids to shear stress.®~7 This happens even in the ‘simplest’ of fluids, composed
of atoms. Examples of this basic weakness in the constitutive approach are given
later in this article.

4) The computer power needed to implement the constitutive approach is about
the same as that needed in the more fundamental approach made possible by
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recent advances in computer simulation. So we might as well use the latter
whenever possible.

5) The fundamental approach attacks problems at the fundamental level, and once
these are solved, a new world of possibilities 1s there for the exploration. It be-
comes possible, for example, to implement group theory and symmetry to reveal
the presence of indicator functions which appear in a fluid in response to shear.
Their presence leads directly to new types of spectra which are characteristic of
the rheology of a sheared liquid. An example is depolarised light scattering.®

Recent work, using nonequilibrium molecular dynamics (NEMD) and Brownian
dynamics (BD) simulation has shown that the response of an atomic ensemble to shear
and elongational stress is a rich landscape of interwoven patterns, a picture which
can be drawn in terms of cross correlation functions (c.c.f.’s) governed by the three
principles of group theoretical statistical mechanics (g.t.s.m.).*!® Time correlation
functions in the transient {(non-equilibrium) state can be used to generalise the Green-
Kubo relations and linear response theory in one simple and elegant equation.’® The
third principle of g.t.s.m. applies also to these transient c.c.f.’s, and is ideal for the
description of shearing and elongational stress in terms of symmetry. In molecular
liquids considerations of symmetry apply not only in the laboratory frame (X, Y,
Z) but also in the molecule fixed frame (x, y, z) as defined in the standard point
group character tables.!7*® This implies that the response of a molecular fluid under
complicated external stress can be analysed precisely with a variety of new indicator
c.c.f.’s in both frames. Not only are these symmetry-specific to the type of stress
(shear, elongation, compression, or any combination, 1921} byt also to the point
group of the molecule in frame (x, y, z). The effect of stress can be studied in both
frames (X, Y, Z) and (x, y, z) by NEMD and Brownian Dynamics, BD simulation,??:23
implementing the SLLOD equations, profile unbiased thermostatting (PUT) or any
other numerical technique.

This represents a significant advance over the constitutive approach to rheology,
which is not able to describe flow at the atomic or molecular level, and in consequence
is not able to describe or anticipate the existence of indicator c.c.i.’s.

Another major advantage of the fundamental approach is that it reveals phe-
nomena on the picosecond/angstrom scale of a computer simulation which remain
valid on the second/metre scale of laboratory and industrial low processes. This f{ol-
lows quite clearly from the fact that the classical equations of motion are valid on both
scales. A one-to-one relation can be developed straightforwardly between simulation
and observation, and it follows that the former is capable of predicting experimental
observables on the second/metre scale. Several master curve and extrapolative tech-
niques for doing just this have been developed recently by Heyes and co-workers.?®:%4
It follows that in the design of specific materials with specific and predictable response
to imposed stresses of various kinds, fundamental computer simulation is the obvious
answer,

The fundamental technique has been applied with notable success by Rapaport
and co-workers,?® and by Clementi and co-workers?®~2?° to flows around objects on
the picosecond/angstrom scale, revealing on this scale the presence of vortices, eddies,
and other flow phenomena whose behaviour extrapolates linearly to the second/metre
scale. These phenomena obey symmetry principles that can be used to relate them to
indicator c.c.f.’s at the fundamental level and thus to close the gap between traditional
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hydrodynamics and molecular dynamics. Some of these symmetries are discussed
later, in the context of flow past objects, hydrodynamic instability (Rayleigh-Benard
phenomena), and in other less well-known contexts such as rotating electric fields as
first tackled by Born,®® in the early twenties of this century and demonstrated ex-
perimentally by Lertes,*!, Grossetti,®?, and Dahler,*3. This elegant work shows that
spinning electric fields can physically rotate a liquid at up to MHz frequencies, and
is the historical precursor of electrorheology, an important contemporary technique.
G.t.s.m. can be applied in all these contexts, and in combination with NEMD and BD
simulation, has already produced indications of the presence of explanations and phe-
nomena unknown to the constitutive approach. Examples described later include 1)
the first explanation for the Weissenberg effect in terms of pressure tensor correlation
functions; 2) the discovery by combined simulation/symmetry of thermal conductivity
produced by simultaneous shear and elongational stress in atomic ensembles.

2. SYMMETRY AND FLOWS

Symmetry is simple and powerful, and its application to complicated flow is no
exception. Of key importancein this application are the three principles of g.t.s.m.,*1 1%
recently developed and stated in terms of contemporary point group theory. The first
principle is the Neumann/Curie Principle applied with group theory, and states that
the ensemble average over a product of scalars, vectors or tensors exists in the labora-
tory frame if its product of representations contains at least once the totally symmetric
irreducible representation of Rj(3), the point group of all rotations and reflections. If
the ensemble is chiral, the relevant point group becomes R(3) of all rotations. The
second principle applies principle (1) to the molecule fixed frame (x, y, z), where the
relevant totally symmetric irreducible representation is that of the molecular point
group, e.g. Ca, for water or Ty for carbon tetrachloride etc. The third principle is a
simple but very powerful cause effect theorem which states that if an external field of
force is applied to an ensemble of atoms or molecules, that ensemble develops transient
or steady state ensemble averages with the same symmetry as that of the applied field
itself. In other words the symmetry of cause and effect is identical.

Principle (3) is found to be particularly useful for NEMD and BD simulation
of complicated flows. It applies across the whole of mechanics, classical, statistical,
quantum and grand unified, and also in other contexts, such as classical, quantum,
and relativistic electromagnetic field theory, both in linear and non-linear contexts.

In order to implement these principles it is necessary to define the irreducible
representations of scalar, pseudoscalar, vector and tensor guantities in the point group
of interest. In the context of principle three, the field symmetry is defined through
these irreducible representations in the point group of the ensemble (i.e. Ry(3) or
R(3)). For R.(3) the set of irreducible representations consists of the the D represen-
tations, Dgo)’ ..................... D!(,n) and DSLO), .................... ,DSP’. In R(3) the set consists
of, DO .. , D{™) Thus, scalar, vector, or tensor quantities in Rx(3) can be
either positive (g) or negative (u) to the parity inversion operation, which takes (X, Y,
Z) to (-X, -Y, -Z) and which is defined as the operation, P : (r,p) — (—7, —p), where r
and p denote position and linear momentum respectively. Of additional interest is the
time reversal operator, defined as T": (r,p) — (r, —p). In R(3) the g and u subscripts
are undefined because the P operator takes the ensemble to the opposite enantiomer,
a distinctly different entity, and is therefore not a valid group theoretical operation.
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In Ry(3) a scalar quantity such as mass is D§°); a pseudoscalar is DSLO); a polar

vector such as linear momentum or position is DS}); an axial vector such as angular
velocity or vortex 1s Dgl); and higher order tensors are u or g. The totally symmetric
irreducible representation is D(go). In R(3) the same definitions apply without sub-
scripts, so that the symmetries of a scalar and pseudoscalar are identical in R(3); as are
those of polar and axial vectors and so on. The totally symmetric irreducible represen-
tation is D{?). In order to build up the symmetries of ensemble averages over products
of two or more quantities, such as time c.c.f’s of the generic type < A4(0)B(t) >, we
use the Clebsch Gordan Theorem,

DM plm) = plntm) 4 platm=1) L + ptr=mI, (1)

with the rule for subscript multiplication, gg = uu = g;ug = gu = u, in Rx(3). If we
are dealing with the nine element tensor < v(t)v(0) >, where v is atomic or molecular
centre of mass velocity, for example, the product of representations in R;(3) is,

Ry(3) : I(v)T(v) = DV DY

2)
— p® (1) (2)° (
=D’ + Dy’ + D,

so that the signature of the complete c.c.f. tensor is the sum of scalar, vector and
second rank tensor symmetries. The complete tensor is overall positive to P and T.
Similarly, the signature of the c.c.f. < v(t)w(0) >, where v and w are respectively the
linear and angular velocities of a diffusing molecule, is

Ry (3) : I(v)[(w) = DV DL

_ D 4 DY) 4 D’ ©

which is negative to P and positive to T.

In the point group R(3) of chiral ensembles the representation of both c.c.f.’s is
the same,

R(3) : I'(v)I(v) = [(v)T(w) = D 4+ D)  p@) (4)

with positive time reversal symmetry. Principle (1) shows therefore that the scalar
component of < »(t)v(0) > exists in Rx(3) but all elements of < v(#)w(0) > vanish. In
R(3) the D(®) element of the latter c.c.i. exists as a pseudoscalar quantity. To apply
principle (3) we need to examine the symmetries of flow fields in both point groups.
Some examples of cause and effect relations obeying principle (3), together with their
P, T and D symmetries are as follows,

Linear force: Acceleration, -, +, DSL”
Torque: Angular acceleration, + , + , Dgl)
Electric field (E): Polarisation, -, +, pY
Electric field (E): < v(t)w(0) >, -, +, DSLI)
Magnetic Field (B): Magnetization, -+ , -, Dgl)

Shear Stress: Off diagonal < v(t)v(0) >, + , +, Dgl) + Dgz)
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Elongational stress: Diagonal < v({)v(0) >, +, + ,D_E,O)
Rotating E: Bulk rotation, +, -, D(gl)

Above, the first entry records Newton’s second law of motion, whereby force results in
a nel acceleration of an IV body ensemble with the given symmetries. An intrinsically
time independent electric field of force results in dielectric polarisation, which is an
ensemble average of the same symmetry over permanent electric dipole moments. Less
obviously, the electric field also causes the vector part of the c.c.f. matrix < v(¢)w(0) >
to appear in frame (X, Y, Z), a result first noted in the mid-eighties using conventional
computer simulation in molecular liquids.

Stress is the negative of the pressure tensor, which is force divided by a scalar
unit volume cross section. Stress therefore has the symmetry of its equivalent force
field, and principle three may be used to find the symmetry of the ensemble averages
set up by stress. These are the same symmetries as strain rate multiplied by a scalar
viscosity, in general the nine element tensor product of velocity and inverse position,

T(v)[(1/7) = D + DM + DB, (5)

with negative T. Shear stress and strain rate symmetry is the off-diagonal part, made
up of a combination of symmetry Ds(,l) (vorticity) and Dgz) (deformation). Elonga-
tional stress and strain rate symmetry is the diagonal part, D§°). Combined shear

and elongational stress (complex stress) produces a response with the complete D
symmetry on the right hand side of egn. (5).

In the context of complex stress we arrive at the important conclusion that en-
semble averages of the same symmetry are set up by principle (3) in frame (X, Y, Z) of
the laboratory. Among these are a new and useful class of indicator c.c.f.’s exemplified
by < Pxy(0)Pyz(t) > for the pressure tensor components and < v(¢)v(0) >, whose
characteristics have been described recently by Evans and Heyes using SLLOD, PUT,
and BD simulation.3%35

3. INDICATOR C.C.F’S, THE SIGNATURES OF COMPLEX FLOW

These are available only from the fundamental NEM D and NEBD computer
simulation methods developed 1n the past few years, and appear to be inaccessible
to the traditional constitutive description of stress induced flow. The work of Evans
and Heyes has shown that the indicator c.c.f. < v(t)v(0) > for shear stress has the
unique property of being neither symmetric nor antisymmetric to index reversal (or
the equivalent time displacement),’

<vx(t)vz(0) >#< vz()vx (0) >, (6)

in the steady state under applied shear. (Here the shear rate is 4 = dvx /0%.) This
property appears to be the first counter-example to the Onsager/Casimir Reciprocal
Principle, which demands symmetry or antisyrametry, but cannot account for asym-
metry, in X and 7. The same time asymmetry arise in the c.cf.’s of the pressure
tensor (zero in the absence of shear). Illustrations of this new and unique property
are provided from SLLOD and PUT simulations in figs. 1 and 2 in the two and three
dimensional fluid states.
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The indicator c.cf. in eqn (6) has the overall D, P and T symmetries of the

above list from principle three, i.e., a weighted combination of Dgl) and Dgz)- This is
a weighted combination of,

DV < ux (twz(0) >= — < vg(thvx(0) >, (7)

and
D) i< wx (t)z(0) >=< vz(t)vx(0) >, (8)

i.e., of antisymmetric shear induced vortex flow and symmetric shear induced defor-
mational low. The combined effect (eqn. (7)) is neither symmetric nor antisymmetric,
and is therefore called ”asymmetric” (non-Onsager/Casimir) flow. The complete D
symmetry of the macroscopic stress field downstream of the disk is therefore,

Dy + D + DY, (9)

implying the existence of all elements of the indicator c.c.f. tensor < v(t)v(0) >. The
explorative work and conclusions of Evans and Heyes on combined shear and elonga-
tional flow,'® may therefore be applied to the region downstream of the disk in two
dimensions, or cylinder in three. For example, we expect the presence downstream of
asymmetric, non-Onsager/Casimir, c.c.f.’s of velocity, position, mixed velocity and po-
sition, and various asymmetric c.c.f.’s of pressure tensor components coming from the
shearing part of the complete downstream stress field symmetry. We expect symmetric
diagonal components of these fundamental indicator correlation functions due to the
elongational part of the complete downstream stress field. These functions would be
the microscopic signature of the macroscopic flow phenomena discussed by Clementi
25-28 ; ¢., eddies, vortices, and so on, the conventional hydrodynamic
description. On a more fundarmental level, these are described by indicator cross
correlation functions.

and co-workers,

As shown by Evans and Heyes, the shear and elongational parts of the complete
stress field are mutually interdependent. The time evolution of the respective indica-
tor c.c.f.’s would likewise depend on each other, but notf the symmetry, which is an
ineluctable signature of the elongational, or alternatively of the shearing, component
of the complicated macroscopic flow. Interestingly, the flow combined downstream
stress field symmetry is expected to produce thermal conductivity, defined as the
Green-Kubo (or the more general Morriss-Evans) integral over the heat flux tensor
of Irving and Kirkwood. The D symmetry of the downstrean stress field remains the
same for more complicated objects, such as an ellipse, or an object shaped like a car
body, aircraft wing, or ship’s hull. Downstream turbulent behaviour, lift, and so on
are characterised therefore by these indicator c.c.{.’s on a fundamental level, and this
should be of direct use in industrial design processes, based on the flow of air or water
past macroscopic objects in NEMD or NEBD simulations.

4. SYMMETRY OF MACROSCOPIC FLOW CREATED BY A ROTATING DISK

A rotating macroscopic disk in an N body ensemble creates a macroscopic flow
consisting of vorticity and elongational shear, the symmetry of whose strain rate tensor

is, Dél)(w) + Dgz)(—) in Ry(3). The time reversal symmetry in brackets is negative.
The equivalent stress field tensor has thﬁe same D symmetry, but is positive to T,
generated by the fact that stress is a 1" negative strain rate tensor multiplied by
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a scalar T' negative viscosity. By principle (3), the stress field causes an effect of
the same symmetry, which may be measured through the same asymmetric indicator
c.c.f.’s, positive to T, as described by Evans and Heyes in the context of couette flow.?

The flow created by a rotating disk therefore has the same non-Onsager Casimir
characteristics as those of couette flow. These fundamental, microscopic, indicator
c.c.f.’s are functions of the visible, macroscopic, non-Newtonian rheology of the fluid.
In some cases, stirring (rotating macroscopic rod) causes the fluid to solidify (corn-
flour paste), a response which is a non-Newtonian in the extreme. In this case the
asymmetric indicator c.c.f. in the shear-induced solid state would be highly oscillatory
and very asymmetric. In the context of stirred liquid crystals, the same non-Newtonian
characteristics dominate, some liquid crystals having the property of acting like clock-
work springs, once wound up (stirred) they unwind again at a different pace after the
stirrer is switched off. In this case the fundamental, indicator c.c.{.’s are going to be
highly asymmetric.

In fig. (3) we show the velocity flow lines around two counter-rotating solid
disks in a 2D LJ fluid. Note the symmetry breaking aspects of the flow lines. In fig.
(4) we show the associated density variation in the configuration. The major density
variations at different points in the flow field reveal the power of the microscopic
simulation technique in accounting for the many-body properties in situ.

5. FLOW FROM ROTATING ELECTRIC AND ELECTROMAGNETIC FIELDS

Mechanical shear rates cannot exceed about a megahertz. This limits exper-
imental investigation to these frequencies. In contrast, the strain rates of a typical
NEMD or NEBD simulation are in the megahertx (MHz) to terahertz (THz) range. It
would be of interest to stir a fluid in the mechanically inaccessible MHz to GHz range
to complete the investigation of its non-Newtonian response. This is easily possible in
principle with contemporary technology by using the Born/Lertes effect.??*! Among
Max Born’s earliest contributions was a theoretical paper published in 1920,%°, which
showed that a liquid suspended between rotating electric fields in a thin walled glass
vessel on a torsion wire produces a measurable torque. Born analysed the effect in
terms of the Debye relaxation time, showing that the effect maximises at the Debye
peak frequency corresponding to the Debye relaxation time. This was confirmed al-
most immediately by Lertes.*! Further exparimental work was reported more than
thirty years later by Grossetti,®> and a masterly teatment by Dahler appeared in
1965.%* The Born/Lertes effect seems not to have been utilised to investigate the non-
Newtonian rheology of fluids, but allows such work to proceed with rapidly spinning
electric fields or circularly polarised lasers, in which the electric field spins about the
propagation axis. The complete D symmetry of the macroscopic stress field down-
stream of the disk is therefore, DE,O) +D§l) +D(gz), implying the existence of all elements
of the indicator c.c.f. tensor < v(t)v(0) >. The original Born/Lertes effect has the
D, P and T symmetries of a rotating electric field. The electromagnetic equivalent,
which seemns not to have been described in the literature, involves the same symmetry,
that of the rotating electric field component of the circularly polarised electromag-
netic field. The nearest equivalent to the electromagnetic Born/Lertes effect is the
discovery by Beth,® that a circularly polarised laser rotates an optically birefringent
crystal suspended on a torsion wire. This was used as one experimental proof of the
fact that a photon has spin, i.e. is a chiral particle travelling at the speed of light.
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The tip of the rotating electric field vector draws out a circle, and the overall
symmetry is the same as that of a shear stress field, i.e., D_f,l)(+) + Dg”(ﬂ, where
Dgl) refers to V x E, the curl, which through Maxwell’s equations is minus the time

derivative of the magnetic field, and the Dgz) refers to the off-diagonal part of the
dyadic VE. Dahler,*® has clearly analysed the macroscopic flow set up by the electric
field with analytical hydrodynamics. The above rotating electric field symmetry is
imparted by principle three to the molecular ensemble contained in the suspended thin
walled sphere, provided that the molecules have a permanent electric dipole moment.
We expect off diagonal, asymmetric, indicator c.c.f.’s of the type < A(#)A(0) > where
4 is molecular centre of mass velocity, dipole moment, angular velocity, and so on to
appear in a computer simulation analysis of this effect. The electric field gradient has
the same symmetry as a stress tensor, and sets up a shear in the ensemble.

The D symmetry of the rotating electric field includes that of angular accel-
eration, or torque, Dél)(—k), which causes the entire vessel to accelerate rotation-
ally against the torsion wire in the Born/Lertes experiment, following the simple
cause/effect principle three. This torque is a direct measure of non-Newtonian ef-
fects and is dependent on an effective viscosity in the same way as mechanical stress
is viscosity multiplied by mechanical strain rate. The strain rate due to the rotating
electric field has, Dgl)(—)—}- D_(,,Q)(—), symmetry, which includes the Dgl)(—) symmetry
of macroscopic angular momentum, angular velocity, vortex, or magnetic field. The
advantage of using the Born/Lertes effect to study non-Newtonian macroscopic flow
is that the rotating electric field frequency can be varied over the Hz to upper MHz
range using four electrodes arranged around the sample suspended in the thin walled
vessel from the torsion wire. The macroscopic torque depends on the Debye relaxation
time as shown by Born, and confirmed by Dahler’s extensive analysis. The Debye re-
laxation time is dependent on the viscosity as is well known in dielectric relaxation.
From the MHz range upwards into the far infra red (to about 100 THz) the rotat-
ing electric field can be generated by circularly polarised electromagnetic radiation,
and here again we expect the appearance of asymmetric indicator c.c.f.’s as the beam
becomes elliptically polarised due to sample absorption through the molecular perma-
nent dipole moment.*” Here again, the maximum torque on the torsion wire appears
at the inverse of the Debye relaxation time, which under certain circumstances occurs
in the microwave frequency range just below the far infra red. This brings the experi-
mental study within the range of computer simulation of shear stress phenomena. We
mention in concluding this section that the non-Newtonian nature of the response of
the sample can also be measured through the time dependent magnetization set up
by the curl of the electric field.

6. THE SYMMETRY AND COMPUTER SIMULATION OF CHANNEL FLOW

The characteristics of macroscopic channel flow have recently been studied by
Lie and co-workers using computer simulation and stochastic hydrodynamics.38:3% Us-
ing two dimensional computer simulations with thermal walls, these authors have
described the velocity and temperature characteristics of very dilute gases in channel
flow, and have begun to investigate the effects of density variation across a temper-
ature gradient in a three dimensional system. They have also simulated Rayleigh
Benard phenomena and hydrodynamic instabilites and cell patterns using upwards of
a quarter of a million particles and specialised boundary conditions. This work shows
clearly the advantages of the fundamental approach, and shows a number of features
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which are again inaccessible to the constitutive approach.

The D, P and T symmetry of the stress field in channel flow is, D_S,O)(+) +
Dgl)(+) + D!(,Z)(—i—), and the indicator function, < v(t)v(0) >, contains all nine ele-
ments in general by principle three. The elongational stress field dominates near the
channel centre away from the walls and the shear stress field dominates near the walls.
Lie and co-workers describe the resulting velocity profile for various Knudsen num-
bers, which on average shows a well defined parabolic character. This much is known
hydrodynamically, but the fundamental approach goes deeper, and may examine the
root cause of this in terms of indicator c.c.f. symmetries at the flow applied steady
state. It is significant that Lie et al. measure a heat dissipation by viscous dissipation
as the density of the ensemble decreases, one symptom of which is increased velocity
near the thermal walls of the flow channel. This appears to support the conclusions of
Evans and Heyes in another context, described already, where combined elongational
and shear flow results in heat flux and thermal conductivity. There is also a temper-
ature profile across the flow channel which is a kinetic energy profile related to the
square of the velocity. In channel flow we may therefore expect indicator c.c.f.’s of
non-Onsager/Casimir symmetry, and also diagonal elements of the indicator c.c.f.’s.
The off-diagonal elements dominate near the walls and the diagonal elements near the
channel centre, thus explaining the observed velocity profile on a fundamental level.

7. HYDRODYNAMIC INSTABILITY AND RAYLEIGH-BENARD PATTERNS

The symmetries of hydrodynamic instability arise from convection when, for
example, a fluid is heated from below. These Rayleigh-Benard patterns have recently
appeared from a fundamental computer simulation.?’ Hydrodynamical instability and
the Rayleigh-Benard problem are usually treated with an infinite layer of fluid in
which a steady adverse temperature gradient is maintained, usually by heating from
below. This implies a pressure and density distribution as well as a thermal gradient.
Rayleigh analysed the early observations of Benard of cell structures due to this hy-
drodynamic instability by building up triangular, quadrilateral, and hexagonal cells
using classical hydrodynamic theory. He showed that the component of horizontal
velocity perpendicular to the cell walls observed by Benard disappears.

A recurring D symmetry in the Rayleigh Benard problem is, DSLUDS})DS),
i.e., the cube of D' This occurs in such quantities as the gradient of the pressure ten-
sor (positive Cf’), the pressure distribution caused by hydrodynamic instability (heating
a liquid from below). It also occurs with negative T symmetry in the equations gov-
erning velocity within the Rayleigh Benard cells, a typical scalar component of which
is, (n.V)v = 0, where n is a unit vector perpendicular to the cell wall. The presence
of a temperature gradient implies a heat flux tensor J, which in the Irving/Kirkwood
definition has the same D symmetry as the gradient of the pressure tensor but is
negative to T'.

The cell patterns emerge from Rayleigh’s analysis by considering equations which
contain scalar components of the second gradient of velocity and the gradient of the
vorticity, which both have the same general D, P and (negative) T symmetries as the
Irving/Kirkwood heat flux tensor J. The thermal conductivity is the Green-Kubo, or
more generally, the Moriiss-Evans, integral over the correlation function of J. With
these symmetries we note that principle (3) applies to the Rayleigh-Benard problem
and its complicated macroscopic cellular flow patterns as follows. The cause (external
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field) in principle (3) is a heat flux, which has the units of force gradient per unit
volume cross section (the same unils as the gradient of the pressure tensor); and one
of the effects is represented by the scalar element {(n.V)v which vanishes at the cell
walls. This is the same P,T and D symmetry, and governs the Rayleigh-Benard
cell patterns. Principle (3) relates the symmetry of the heat flux tensor directly to
the symmetry of the Rayleigh-Benard macroscopic flow cells. We have reduced the
complicated Rayleigh-Benard macroscopic flow problem to a (DS}))3 symmetry. This

can be rewritten as the product, D&l)(D§0)+D§1)+D§2)), one of whose two components
is the combined symmetry of the indicator c.c.f. < v(¢)v(0) >. In the Rayleigh-Benard
cells, therefore, we expect non-Onsager Casimir off-diagonal elements of < v(¢)v(0) >
and symmetric diagonal elements, the former predominating near the cell walls and
the latter near the centre of the macroscopic flow cells. Interestingly, the Rayleigh-
Benard D symmetry also allows all scalar elements in general of the triple indicator
correlation function < wvvv >. The latter is unique to Rayleigh-Benard flow and
computer simulation should reveal many of its interesting features.

8. CONCLUDING REMARKS

Several different macroscopic flow problems recently treated by microscopic com-
puter simulation have been analysed and reduced to combinations of D symmetries of
the point group Rx(3}. The elongational stress field has symmetry Dgo)(+); the shear-
ing stress fleld is a linear combination of the vorticity component of D_E,l)(+) symmetry,
and the deformational component of Dgz)(+) symmetry. The combined elongation
and shear stress field is a linear combination of these three D components. In channel
flow, DS(,O)(—}—) dominates near the channel centre, and D_S,l)(+) + D_E,z)(+) near the
walls. In the Born/Lertes effect, the rotating electric field sets up Dél)(-l—) + Déz)(+)
macroscopic flow; and Rayleigh Benard hydrodynamic instability has the symmetry
signature (DL‘))3. Principle three of g.t.s.m. applies to all these complicated macro-
scopic flows, and shows the presence of indicator c.c.f.’s of each type of low. Some
components of the indicator c.c.f.’s break Onsager/Casimir symmetry (vortex and
deformational shear flow), others are symmetric diagonal (elongational flow). The
Rayleigh Benard cells allow both types, together with scalar components of the triple
indicator c.c.f < vvv >.
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