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ABSTRACT 

A new test of the quantum theory is proposed by equating the intensity ratio of the 

Planck distribution with that of the Bouguer Beer Lambert law. The power absorption 

coefficient of the latter is computed with transition dipole moments calculated from the wave 

functions for the rotational spectrum of a diatomic molecule. The wave functions are the 

spherical harmonics. It is shown that the quantum theory predicts a change in frequency to 

the red of probe radiation tuned to an absorption line, and that the initial probe frequency is 

split. These are the Evans I Morris shifts and splittings. 

Keywords: ECE theory, Planck distribution, Bouguer Beer Lambert law, red shifts and 

splittings of the initial probe frequency. 



1. INTRODUCTION. 

In recent papers of this series { 1 - 12} it has been shown that the probe frequency 

in any type of absorption process is shifted and split in a well defined way. This is a new 

optical phenomenon that emerged from the application of fundamental laws of optics to the 

Evans I Morris effects. These are colour changes that accompany the absorption of a laser by 

materials such as liquids and glasses, and they are described in comprehensive detail on the 

blog ofwww.aias.us. The quantum theory has been applied in a new way by equating the 

intensity ratio of the Beer Lambert law (first inferred by Bouguer in the early eighteenth 

century) to the same intensity ratio obtained from the Planck distribution. This procedure 

immediately shows that the frequency of the probe beam must be changed as it propagates 

through the sample. In an absorption process the frequency is progressively lowered. This 

process depends on the sample path length Z and on the transition dipole moment. The 

decrease in frequency occurs in a different way for each transition dipole moment. The result 

is that more than one red shifted frequency can emerge from the sample. 

These emergent frequencies can be measured by a suitable experimental method 

such as interferometry. They can be predicted precisely by the quantum theory and this new 

effect is a test ofthe theory. The observations of G. J. Evans and T. Morris are reproducible 

and repeatable and can be explained by the quantum theory used in this way. 

In immediately preceding papers the shifts and splittings were computed for the 

spectrum of atomic hydrogen, predicting an intricate pattern of splittings for each line. In 

Section 2 the red shifts and splittings are computed for the rotational spectrum of a diatomic 

molecule. This is well known to be a series of equa,Uy spaced lines in the microwave and far 

infra red, so a probe laser or microwave source can be tuned to each absorption line, and 

according to fundamental quantum theory the probe laser frequency is shifted progressively 



to the red as it propagates through the sample. The process depends on the transition dipole 

moment between wave functions that are known analytically, so the shifts and splittings can 

be computed precisely. As usual this paper should be read with its background notes. No.tes 

308(1) and 308(2) give more details ofthe shifts and splittings expected in atomic H. Section 

2 is based mainly in Notes 308(3) and 308(4), which apply to the rotational spectrum of a 

diatomic, while Note 308(5) extends consideration to the harmonic oscillator which can be 

used to model the simplest type of vibrational spectrum. In each case there are characteristic 

patterns of shifts and splittings which can be computed precisely with the quantum theory. 

2. RED SHIFTS AND SPLITTINGS IN THE ROTATIONAL SPECTRUM OF A 

DIATOMIC MOLECULE AND RED SHIFTS OF THE HARMONIC OSCILLATOR. 

Consider the solution of the Schroedinger equation for a rotating diatomic· 

molecule of reduced mass: 

The moment of inertia ofthe molecule is: 
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where R is the distance between m \ and ~ ';) . The Schroedinger equation is: 
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Here.(is the reduced Planck constant and E the quantized total energy where t is the 
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wave function. In spherical polar coordinates the laplacian is well known to be: 
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It follows that the Schroedinger equation is: 

where the legendrian is given by: ( LJ J 
I\_ J. _ J_ ~ Si._a 58 s~he 
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So the energy levels of the rotating dipolar molecule are given by: 
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In the absence of any other consideration these are (21 + 1) fold degenerate, 

because: 

Therefore for 1 = 0 there is one rotational energy level because m has only one value, 0. For 1 
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= 1 there are three degenerate energy levels because m = -1, 0, and 1, and so on. Therefore 

for 1 = 12 for example there are 25 rotational energy l~vels all at the same energy, i. e. 25 fold 

degenerate. The selection rule between rotational energy levels is: 
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The energy levels do not depend on m and the transition between energy levels is defined by: 

f(R~~-t(e) ~~((b0(€~~)-e(et0 ~!~ (-e+)_-(t~ 
Usually this is denoted in wave numbers by: 

. N ~ ~u(-s T )· -C\0 
The rotational absorption spectrum consists of equally spaced absorption lines and 

occurs in the microwave and far infra red. The envelope of the spectrum is the Boltzmann 

distribution. 

The electric dipole moment of the linear diatomic in spherical polar coordinates 

lS: 
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law produces, in the low frequency approximation: 

w ~ C-Jo ~xf (-A~ 
where CJ 0 is the incoming frequency of the probe laser and GJ is its frequency after 

traversing a sample thickness Z. Here A is the integrated power absorption coefficient: 
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where there are N molecules in a volume V, fo is the S. I. vacuum permittivity and 

where v is the velocity of the electromagnetic probe radiation in the sample. In a sample of 

dilute gas the following approximation is sufficient: 

but in condensed matter this is no longer true (see immediately preceding papers of the UFT _, 
series on www.aias. us). The low frequency approximation is valid up to about 100 ( h-

in the far infra red. 

For example, for the transition 1 = 0 to 1 = 1 the lower rotational energy level 

is characterized by: - (:1) z - 0 )V\.... 0 

and the higher by: 
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so there are three possible transition dipole moments: 
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energy degeneracy of the 1 =0 to 1 = 1 transition is lifted, and the initial probe frequency 

is shifted to the red in three different ways. Therefore the radiation emerging from a sample 

cell of thickness Z will contain three different frequencies. So the initial Cv b is split into 

three. This is the direct result of fundamental quantum theory and the three emergent 

frequencies can be predicted precisely with this fundamental quantum theory. Therefore they 

can be investigated experimentally, giving a new test ofthe quantum theory. 

These are named the Evans I Morris red shifts and splittings. 

In general the wave number of the pure rotational spectrum is: 

- -=- ( [.{>n- tR-)/{t~ - )t(£+ 0/7 

-

and the transition dipole moments are: 



Two examples can be considered as follows. 

1) For 1 = 0 the transition wave number is 

N -=- )_~ -=- ( G,- f0 I (C-) - (?,)) 
and the selection rule is: 

The absorption line occurs at this transition wave number. There are three possible values of 

m for 1 =1: 
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Therefore: 

and there is one transition dipole moment possible in each sense of polarization of the probe 
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laser. 

Therefore: 
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Therefore there are three transition dipcfel moments for each sense of polarization of the 

probe laser. 

IfN is the number of red shifted frequencies emerging from a sample of path 

length Z the number of red shifted frequencies is.: 
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and is the same as the energy degeneracy of each line. 

The initial angular frequency is: 

in radians per second where f""> () is the initial wavenumber. For 1 = 0 this is 2B; for 1 = 1 it 

is 4B; for 1 = 2 it is 6B; and for 1 = x it is 2B(x + 1). For example, if the initial probe laser 

-frequency is tuned to "'-> 0 = 4B, three red shifted frequencies emerge from the sample cell 

according to fundamental quantum theory. Ifthe initial probe laser is tuned to 16B, fifteen 

red shifted frequencies emerge from the sample cell, and so on. 

In order to observe these frequencies a fully computerized far infra red Fourier 

transform Michelson interferometer can be used as in the following sketch: 

Finally in this Section a synopsis is given ofNote 308(5) accompanying UFT308 on 

www.aias.us, a note that deals with the harmonic oscillator and the simplest type of 

vibrational spectrum. 

A typical vibrational spectrum occurs in the high frequency approximation: 
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The hamiltonian of the harmonic ;il~tor is~1 ) '- _\_ .\(.?_ () _ ( ~) 
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and its energy levels are well ET :s -=- l f\ -\ ~ )i: W _ ( 4-1) 
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and where H "' ( '":J \ are the Hermite polynomials. There is only one quantwn nurn ber n and 

the selection rule J ~ '0- ~ i_ _ ( S I) 

between energy levels: 



Therefore the transition dipole moments must be computed with the wave . 
functions ( 4--'\ ). The well known Hermite polynomials are real valued and the first eight are 

given in Note 308(5). The X, Y and Z components of the transition dipole moment are given 

in spherical polar coordinates by: B ~ 

)A~ -=-~ .S ;.__ (o.S 7: 
r-; -;_ r s•~..B s•~-. f 
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Therefore the transition dipole moment is: 

and similarly forr~ and )A. . .;" There is no degeneracy in the energy levels. 

Therefore for the harmonic oscillator and a simple vibrational spectrum there is an 

Evans I Morris red shift for each vibrational absorption line, but no splitting. The extent of 

the red shift is given by the transition dipole moment, and the red shift is observable with the -
experimental set up sketched in Figure 1. This is another critical test ofthe quantum theory. 

3. COMPUTATION OF ENERGY LEVELS AND DISCUSSION 

Section by Dr. Horst Eckardt 
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3 Computation of energy levels and discussion

The dipole transition matrix elements of the spherical harmonics have been
calculated for the lowest angular momenta. As explained in section 2, the
transition rules are

∆l = ±1, ∆m = 0, ±1. (58)

The cartesian dipole components, translated to spherical coordinates, are

µX = eR sin(θ) cos(φ), (59)

µY = eR sin(θ) sin(φ), (60)

µZ = eR cos(θ). (61)

The corresponding matrix elements of the spherical harmonics are

µK l,l′,m,m′ =

∫
Y ∗l′m′ µK Ylm dτ (62)

for K=X,Y,Z, where the common factor eR has been omitted. Only the matrix
elements obeying the transition rules (58) are non-zero. The results are listed
in Table 1. Obviously the rule ∆m = 0 belongs to the Z component of µ while
the rules ∆m = ±1 belong to the X and Y components. The Y components are
the same as the X components but imaginary and partially with a sign change.
These di�erences are not relevant because only the modulus of the transition
element occurs in physical laws. They show a kind of parity di�erence between
left- and right-circular polarization.

The harmonic oscillator in one dimension is de�ned by the Hermite poly-
nomials. Di�erent de�nitions of these functions exist, we used the "physicist's

∗email: emyrone@aol.com
†email: mail@horst-eckardt.de
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polynomials" whose �rst functions are given by

H0 (y) = 1 (63)

H1 (y) = 2 y (64)

H2 (y) = 4 y2 − 2 (65)

H3 (y) = 8 y3 − 12 y (66)

H4 (y) = 16 y4 − 48 y2 + 12 (67)

H5 (y) = 32 y5 − 160 y3 + 120 y (68)

The normalized wave function of the harmonic oscillator is de�ned by

ψ (n, y) =
(mω

~

) 1
4 1√

2n n!
√
π
Hn(y) exp

(
−y2

2

)
(69)

with

y =

√
mω

~
x. (70)

These represent an orthonormal set of functions:∫ ∞
−∞

ψ(n1, x)ψ(n2, x) dx = δn1n2 . (71)

These orthogonality relations have been checked. The dipole transition matrix
elements then read

µ =

∫ ∞
−∞

ψ(n1, x)xψ(n2, x) dx (72)

and have been tabulated in Table 2. One can see that the transition rule

∆n = 1 (73)

of the harmonic oscillator is ful�lled.
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transition
l,m→ l′,m′ µX µY µZ

0, 0 → 1, -1 − 1√
2
√
3

i√
2
√
3

0, 0 → 1, 0 1√
3

0, 0 → 1, 1 − 1√
2
√
3

− i√
2
√
3

1, -1 → 2, -2 − 1√
5

i√
5

1, -1 → 2, -1 1√
5

1, -1 → 2, 0 1√
2
√
3
√
5

i√
2
√
3
√
5

1, 0 → 2, -1 − 1√
2
√
5

i√
2
√
5

1, 0 → 2, 0 2√
3
√
5

1, 0 → 2, 1 − 1√
2
√
5

− i√
2
√
5

1, 1 → 2, 0 1√
2
√
3
√
5
− i√

2
√
3
√
5

1, 1 → 2, 1 1√
5

1, 1 → 2, 2 − 1√
5

− i√
5

Table 1: Dipole matrix elements µfi of spherical harmonics.

transition
n1 → n2 µ

0 → 1
√
~√

2
√
m
√
ω

1 → 2
√
~√

m
√
ω

2 → 3
√
3
√
~√

2
√
m
√
ω

3 → 4
√
2
√
~√

m
√
ω

4 → 5
√
5
√
~√

2
√
m
√
ω

Table 2: Dipole matrix elements µfi of the harmonic oscillator.
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