APPENDIX 1 : HODGE DUAL TRANSFORMATION

The general Hodge dual of a tensor is defined { |} } as:
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where:
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is the totally anti-symmetric tensor, defined as the square root of the modulus of the

determinant of the metric multiplied by the Levi-Civita symbol:
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Using the metric compatibility condition { \\ }: ( >
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it is seen that: \
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because the determinant of the metric is made up of individual elements of the metric tensor.
The covariant derivative of leach element vanishes by Eq. ( AL\—), so we obtain Eq. (AS).
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The pre-multiplier \ Ga\ is a scalar, and we use the fact that the covariant derivative of a

scalar is the same as its four-derivative { I }:
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The homogeneous field equation ( \.\. ) in tensor notation is:
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and this is equivalent {3 -3 )\3} to: )
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The Hodge dual of a two-form in four-dimensional space-time is another two-form. For

example:
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The Bianchi identity:
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is an identity between two-forms. So it remains true for:
< o ‘“(T{q + o’ AT
d NF P - A \,/“A A
~ ~ o a (AD)

because F R ,and T are two-forms, antisymmetric in their last two indices. In
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other words if we write down the sum:
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it is identically equal to the sum:
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So the inhomogeneous field equation is:
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which is equivalent to:
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as given in the text.



