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ABSTRACT

The conventional definition of the Riemann tensor is shown to be incomplete because
the torsional component is missing. The commutator of covariant derivatives acting on the
four vector is shown to produce a tensor that is conventionally antisymmetric in its first two
indices (the conventional curvature or Riemann tensor) stemming from the use of the
Christoffel connection. More generally both the Riemann and torsional tensors are
asymmetric in their first two indices because there is no torsion free condition in general. The
complete tensor is the sum of these two tensors and is named the S tensor, and the
generalized Einstein Hilbert field equation deduced for the S tensor. In this way spin or
torsion is introduced into general relativity in a novel and fundamental manner, and the

ramifications of this modification work through into all areas of dynamics.

Keywords: Riemann tensor, torsion, commutator of covariant derivatives, round trip with

covariant derivatives, general relativity.
L nd Pa\(u -& % W%eo\ boeld TB@‘“}

/’D



1. INTRODUCTION

The theory of relativity {1} is based conventionally on Riemann geometry and
the use of the Christoffel connection {2}, which is symmetric in its lower two indices. The
Einstein Hilbert field equation is deduced from the second Bianchi identity with the torsion
free condition stemming from the Christoffel connection. In consequence all the information
given from considerations of gravitational torsion is lost. Recently {3-25} it has been realized
that the electromagnetic field tensor is spacetime torsion within a C negative vector potential
magnitude A(o . This is electromagnetic torsion as distinct from the novel gravitational
torsion considered in this paper. Therefore torsion is fundamentally important in relativity
theory and cannot be neglected. The role of torsion is seen most clearly through the Cartan
structure equations and the Bianchi identities of Cartan geometry.

In Section 2 the commutator of covariant derivatives acting on the four vector
V)kin the four dimensions of spacetime is shown to produce in general a sum of two tensors,
a sum that premultiplies the vector itself. In addition there are four other terms which
premultiply the four derivative of the vector. One of the terms that premultiply the four vector
itself has the same structure as the conventional Riemann tensor, but in general the
connections within this tensor are asymmetric in their lower two indices, and are not torsion
free and are not Christoffel connections in general. The second tensor premultiplying the
vector itself is novel to this work, and is named the torsional tensor. The symmetries of the
various connections within the torsional tensor are determined by the commutator itself. The
sum of these two tensors is named the S tensor in order to distinguish it from the
conventional Riemann tensor. The S tensor is therefore defined as the sum of the two tensors
that premultiply the vector itself. The S tensor is always needed for a complete description of
gravitation in a spacetime with both curvature and torsion present - the Evans spacetime of

unified field theory {3-25}.



In Section 3 the generalization of the Einstein Hilbert field equation is
deduced for the S tensor, showing the presence of novel terms due to gravitational torsion. In
general gravitational torsion affects cosmological observations, but gravitational torsion is
neglected in conventional general relativity. The latter appears to be very accurate for the
solar system {26} but in other contexts appears to be very inaccurate {27}. Tﬁerefore the
presence of gravitational torsion is indicated experimentally by data which cannot be
explained with the conventional Riemann tensor. This is unsurprising in retrospect because
the Riemann tensor is always predicated on the assumption that the connection is the
Christoffel connection. This assumption is equivalent to assuming that there is no torsion in
the universe, and there is no a priori reason why torsion should be absent. In unified field

theory, torsion is the fundamental electromagnetic field itself.

2. DERIVATION OF THE S TENSOR.

The S tensor is derived straightforwardly by operating on the four-vector V f
with the commutator of covariant derivatives. This is how the Riemann tensor is derived
conventionally {2}, but with the torsion free condition always assumed. There are four terms
missing from the derivation by Carroll {2}, a derivation which is corrected as follows to
produce the S tensor.

Consider the commutator of covariant derivatives D, , acting on the four -
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vector V in Evans spacetime:
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The covariant derivative is defined by:
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and in general the connection P o s asymmetric in its lower two indices, indicating the

simultaneous presence of curving and spinning:
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The Christoffel connection is symmetric in its lower two indices:

A

indicating the absence of spinning or torsion, but the presence of curving.
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Finally rearrange terms and dummy indices to obtain:
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The S tensor is defined as the sum:
A

..Sp«r - = QP"/N - \_\/))\JT M

_ (1)

of the general Riemann tensor (2 Fo“ M (denoted henceforth as the R tensor) and the

general torsional tensor T/)O" o (denoted henceforth as the T tensor):
P T —(9)
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Note carefully that the T tensor is different from the conventional torsion tensor

used in Cartan geometry {2}:
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The T tensor is one of the terms that premultiplies V. in Eq. ( (7 ) while the conventional
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torsion tensor (A ) premultiplies <) )'—\1 in Eq. ( é) ). There are two other ferms
present in Eq. ( (9 ) which are incorrectly omitted by Carroll {2}. These terms, which

2
premultiply )A,V ‘fand )/.,.v , also have a fundamental physical significance in
relativity theory but will be considered in future work. The S, T and R tensors are by
definition all antisymmetric in their last two indices /‘. and ~ ,butin genéral are
asymmetric in their first two indices /0 and Y . The conventional Riemann tensor is
antisymmetric in its first two indices /0 and 9 because of the torsion free condition
used in deriving it {2}. The same torsion free condition means that the conventional Ricci
and metric tensors {2} are symmetric. More generally they are asymmetric {3-25} and in
general there is no unique Ricci type tensor definable from the S tensor by index contraction.
Therefore the conventional Einstein Hilbert field equation is a special case of many possible

field equations of relativity and unified field theory {3-25}.

Due to the antisymmetry in /*A and -~ the S tensor obeys the identities:
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which are generalizations of the first and second Bianchi identities obeyed by the

conventional Riemann tensor. The Bianchi identities are examples of the Jacobi identity:
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The second Bianchi identity is most generally a relation between covariant derivatives:
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and this is true for any connection. As first shown by Feynman { Q g } the Jacobi identity
can be derived by a round trip of covariant derivatives around a cube. In the condensed

notation of differential geometry {2-25} the identities ( 10 ) and ( W ) become:
b
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where q is the tetrad form and where D " is the covariant exterior derivative of

differential geometry.

3. FIELD EQUATION FOR THE S TENSOR.
The well known historical route to the Einstein Hilbert field equation is adhered
to in this section, but the end result is more general, because it considers non-zero torsion.

The first step is to define the S tensor with lowered indices:
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No assumptions are made concerning the symmetry of the metric tensor % N In general it
f
is a tensor with symmetric and asymmetric components. This can be seen using differential

geometry, in which the symmetric metric is the dot product of two tetrads:
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where ’\ \ is the Minkowski metric. The asymmetric metric is the wedge product of two
«
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tetrads:
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and for each index c is an antisymmetric tensor of the base manifold, Q.E.D. The most
general metric is the outer or tensor product of two tetrads:
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and for index G\n is an asymmetric tensor of the base manifold, Q.E.D. Therefore the
symmetric metric is a special case (the symmetric part) of the most general metric formed
form the tensor or outer product of two tetrads. Since tetrads are always mixed index tensors
{2-25}, a dot, wedge and tensor product of two tetrads may always be defined, and so the
asymmetric metric may always be defined in the n dimensional manifold using the principles
of standard differential geometry. The asymmetric metric g/wo in Riemann geometry is thus
defined for a given index ab of the tangent space to the n dimensional base manifold at point
P. This tangent space always exists but was not considered in Riemann geometry (which
predated differential geometry by many years). This appears to be the root cause of the
incorrect assertion sometimes made that the metric must always be a symmetric tensor.
Therefore, as in Eq. ( b ) it is always possible to define the S tensor with lowered indices

using a metric of any symmetry. It is understood that Eq. ( \ b ) applies in the base manifold



for each ab index of the tangent spacetime in general.
Now make a double index contraction on the identity ( \\ ):
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The sign difference convention comes from the antisymmetry of the S tensor in M and ~ .
This convention, used by Einstein in 1915, is defined as follows. If indices are in the same
order in the metric and in the tensor multiplied by the metric, then the resulting sign is
positive. If indices are in the opposite order in the tensor to the index order in the metric, then

the sign is negative. Adhering to this convention then:
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Finally use:

to obtain:
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The field equation is obtained by the equation:
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where k is the Einstein constant, and T is a more general canonical energy-momentum
tensor than used by Einstein and Hilbert. Here T o contains angular or torsional energy-

momentum as well as energy momentum defined by curvature as in the original Einstein

Hilbert field equation. Therefore the field equation of the S tensor is:
S, -LSe . &T ()
r a cbf/h fr :

By carefully considering the convention for defining the Ricci tensor from the
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Riemann tensor, it is possible to factorise Eq. ( 3© ) into the Einstein Hilbert field equation
and a new field equation for torsion. The Ricci tensor is defined { ¥ } conventionally by

contracting indices of the Riemann tensor with the symmetric metric:

N
R = mh R B Y
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The order of the indices is the same in the metric and the Riemann tensor. The conventional

Ricci tensor is a symmetric tensor because of the following property of the Riemann tensor:
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Note that Eq. ( 3 ) is true if and only if the Christoffel connection is symmetric, i.e. if there

is no torsion present. More generally the Ricci tensor is asymmetric in the presence of torsion.

In the absence or in the presence of torsion the following property is true of the R tensor:
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but this becomes the Riemann tensor if and only if torsion is absent. Therefore the following

property is always true of the Ricci tensor contracted from the R tensor: ( 3 \-)
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In the absence of torsion the Riemann tensor is antisymmetric in its first two

indices as well as in its last two indices. This implies the property:
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The scalar curvature formed by double contraction of the Riemann tensor is therefore always

positive in the absence of torsion:

R =97 Ry - )

These are the conventions and properties that lead to the 1915 Einstein Hilbert field equation.
In the presence of torsion however, the Riemann tensor is no longer antisymmetric in
its first two indices, and the Ricci tensor is no longer a symmetric tensor. The Einstein Hilbert
field equation also depends on the use of a symmetric metric in the index contraction that
leads from the second Bianchi identity of Riemann geometry. Every asymmetric tensor is the

sum of an antisymmetric and symmetric component, so it is always possible to write:
()
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If the symmetric part of the metric is used in the index contraction procedure then:

o

W,



T D G

/A ~ /4\»)

The conventional and symmetric Ricci tensor used in the 1915 Einstein Hilbert field equation

is defined by:
Gy
_ BRI ()
R,.. R = 2pe

Under these conditions, Eq. ( 30 ) splits into a symmetric part, which is the 1915 Einstein
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and an antisymmetric part: ¢
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Hilbert field equation:
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which is a new torsional field equation, containing new physics, notably considerations of

(n)

angular energy / momentum from T | .
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The S 5 tensor is defined from:
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The S tensor is therefore proportional to the torsion form used in Cartan differential
e
geometry:
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Eddington type experiments test only the Einstein Hilbert field equation of 1915, and
do not consider torsion at all. In this paper we have deduced a torsional equation ( LWa ) but in
so doing have restricted consideration to the symmetric metric. More general considerations
require the use of the tetrad and the Palatini variation of general relativity. The Einstein

Hilbert field equation is replaced by the more fundamental:

R - kT -~ (&)

as described in detail in refs. (3) to (25). In this way the mutual influence of gravitation and
electromagnetism may be investigated using the asymmetric connection in differential
geometry using the tetrad as the fundamental field rather than the metric as in the Einstein

Hilbert variation of general relativity.
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