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ON WHITTAKER’S REPRESENTATION OF THE
CLASSICAL ELECTROMAGNETIC FIELD IN VACUO, PART II:
POTENTIALS WITHOUT FIELDS

ABSTRACT

Whittaker represents the classical electromagnetic field in vacuo in terms of two longitudinally directed
magnetic fluxes, whose amplitudes are F and G. Each obeys the d’ Alembert equation in vacuo, an equation
which is derived from the Maxwell-Heaviside vacuum equations by using the Lorenz condition. It is shown
in this paper that it is possible to represent the solutions of the classical Maxwell-Heaviside vacuum equations
in vacuo using potentials derived from F and G. Under well defined conditions, there are potentials but no
fields. It is shown that F and G are gauge invariant and physical quantities, and that the four potential
representation in vacuo is also physical and gauge invariant. This is contrary to Heaviside’s view and in
agreement with that of Maxwell and Faraday - that the vector and scalar potentials are physical on the
classical level. Therefore it is proven that there is no gauge freedom in electrodynamics represented as a U(1)
gauge theory in contemporary language. Since Whittaker’s # and G are moduli of magnetic flux vectors fand
& in the propagation (longitudinal) direction in vacuo, there must be for every physical situation a magnetic
flux density. This is the Evans-Vigier B® of the non-Abelian electrodynamics, a Yang-Mills gauge theory
with a physical O(3) symmetry internal gauge space. The B® field is represented directly in terms of the
physical F and G of Whittaker. It is also shown that time-like and longitudinal photons are physical, and that
canonical quantization to photons takes place straightforwardly from the d’Alembert equations for Fand G,
since these are massless Klcin-Gordon equations for scalar classical ficlds.

INTRODUCTION

Sir Edmund Whittaker {1, 2} has represented the electromagnetic field in vacuo in terms of two
magnetic fluxes, which are vectors f and g directed longitudinally in the axis of propagation of the
electromagnetic field in vacuo as represented by the Maxwell-Heaviside equations. The moduli or magnitudes
of fand g are denoted by the scalar magnetic fluxes F and G, from which the contemporary four-potential
A" can be derived; and from which all the electric and magnetic field components present in vacuo can be
derived. In this paper, it is proven that F and G are gauge invariant and physical, so that 4* also has this
property. Upon canonical quantization of the d’ Alembert equations for F and G, which are massless Klein-
Gordon equations, the concept of a spin one massless boson is retrieved straightforwardly. This is the photon.
The latter is shown to have physical time-like and longitudinal components as well as physical transverse
components. Therefore a careful development of Whittaker’s work leads to conclusions which are contrary
to several of the assertions in the contemporary literature, and contrary to Heaviside’s opinion that the vector
and scalar potentials are classically unphysical. The gauge freedom of the U(1) representation of the classical
electromagnetic field is shown to be a flawed concept. Finally, the existence of longitudinal magnetic fluxes
Sand g in vacuo implies the existence of a longitudinal magnetic flux density in vacuo under every physical
circumstance. This is the Evans-Vigier field B®, whose proper theoretical development must take place
within a different gauge theory from U(1). This is a Yang-Mills theory with a physical internal gauge space
of O(3) symmetry. The B® field is undefined in Maxwell-Heaviside electrodynamics in the vacuum.
Therefore electrodynamics is enriched considerably by a development of Whittaker’s work {1,2} and by a
development of gauge theory {3-10} applied to electrodynamics as a direct logical consequence of
Whittaker’s work.
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PROOF OF THE GAUGE INVARIANCE OF THE TRANSVERSE PART OF 4#

The electric and magnetic components of the electromagnetic field are defined by Whittaker under
any circumstance, including the classical vacuum, as:

B=_V><(vxg)+lvxf )
c
E=cVx(Vx f)+Vxg )

where fand g are directed in the propagation axis, the longitndinal (Z) axis under all circumstances, including
the vacuum. Eqn (1) is invariant under:

g—>g+Va, Vxg->Vxg+Vb 3)
where a and b are arbitrary. This implies that:
Vxg—>Vxg+Vx(Va)=Vxg 4)
The transverse part of the vector potential is defined by {11}:

A, =—(Vxg) o)

and so is gauge invariant and physical. The transverse A4, has no gauge freedom, in other words under a U(1)
gauge transformation:

A, > A, ©6)

which means that A, is physical and observable on the classical level. Several experiments illustrating this
conclusion are given by Barrett {12}.

From eqn. (1), the vector potential in general is given by:
1 .
A=-Vxg+—f @)
C

and the Stratton potential {11} by:

S=-cVx f-g. (8)
Therefore both A and .§ have transverse and longitudinal components in general, An argument similar to the
above shows that the transverse space-like and time-like parts of the Stratton four potential S# are also

physical and measurable quantities, contrary to Heaviside’s opinion.

The magnetic flux moduli F and G in vacuo obey the Klein-Gordon equation for a massless particle,
i.e. the d’Alembert equation for a classical field:

oF =0G =0. )
If the U(1) gauge condition is applied to these equations we obtain:

o(Va) =o(Ve) = 0 (10)
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so q and c are not arbitrary as required by the received opinion about U(1) gauge transformation. Therefore
JSand g are physical and observable, as demonstrated by Whittaker {1, 2}. Since fand g are physical, 4, is
physical and so the transverse part of 4* is physical.

PHYSICAL NATURE OF THE LONGITUDINAL PART OF 4%,

The received opinion {13} asserts that there is no physical longitudinal vector potential in vacuo and
no concomitant time-like part of the longitudinal 4%, To disprove this opinion we start from the equations:

A=—V><g+—l—f an
c
S=-cVx f-g (12)

and the Lorenz condition used by Whittaker in deriving the d’ Alembert equation from the Maxwell-Heaviside
equation:
10
vea+ L% g (13)
c” ot

where @/c is the time-like part of 4%, Differentiating eqn. (11):

A:—ng+lf (14)
c
and from eqn. (13):
b =c’Veo(Vxg)—cVsf. (15)
Therefore
4" =(¢,cA)
= (02 [Vi(Vx g)dt—cVef,~cVx g+ f)
=(—c2 J.V-Adt—cV-f,—chngf) (16)

=(0 —cVef,cd+ f)
= ((I)T,CAT)+ (¢L,CAL).
There exists in vacuum classical electrodynamics a physical transverse:
Ar =(b7,cAr) )
and a physical longitudinal:

Al =(0,,c4,)=(=cVf, f) (18)

because f'is physical. Therefore on canonical quantization, there exist physical longitudinal photons and their
concomitant physical time-like parts. By definition:
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In the special case where the transverse A» consists of plane waves in the radiation zone in vacuo, there is
a direct relation between F and G

4! =(— oF aij. (19)

F=iG 20

A = _75-0) (X -iN)e®(1,k) Q1)
where the electromagnetic phase is defined by
O=0r-xZ. (22)

Here @ is the angular frequency at time ¢ and x the wavevector at position Z in the frame (X, Y, Z). In this
case:

1 6
0,4 =V.A, +—CT-é—tL- (23)

which obeys the Lorenz condition:
8,41 =0 (24)
as required.
The longitudinal vector potential in vacuo is lightlike:
4, 45 =0 (25)
and may be written as:
A; =©0,,c0.k) (26)
where @, = @,k. The potential ¢, obeys the Klein-Gordon equation for the classical field:
o, =0. @n
Canonical quantization proceeds in a well known manner {13} from eqn. (27), giving physical longitudinal

and concomitant time-like photons. The Lagrangian for eqn. (27) is obtained from the Noether Theorem and
is:

1 . ’ _
L= 58 *(0,6,)0,0,) (28)
from which is obtained the energy momentum tensor;
. oL

O =—"0p¢, -8"C 29
20,0,) " @2
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H, = je 4. | (30)
In S.I units, the Hamiltonian must be of the positive definite form:
1
H, =— (8.0, + V14V )aV (3D
HoR
where R? = X2 + Y2, Therefore R can be interpreted as the radius of a light beam. Using the relations:
A(O) (X Y) flod
=—"n(X ~il)e (32)
r 7
Loao on A
00, =——id“ (X —iY)e"” — (33)
o c \/5
. A©® o
Vo, = i7_2-Km(X+ ive™ (34
4° o
Vo, =~i k(X —iY)e (35)
L \/5
the Hamiltonian is the positive definite quantity:
1
H, = - jB“’"’dV (36)
0

which in terms of the Evans-Vigier field B® = BO% js:

1
H, = ™ j’B‘” BOJy @7
0

for a given beam radius in the vacuum, This is an improvement on the concept of plane waves, with undefined
lateral extent. A physical light beam has a defined lateral extent, i.e. a defined radius R.

Therefore Whittaker’s work, when extended to the O(3) level {11} clearly indicates the existence of
the B® field, which is the magnetic flux density associated with the magnetic fluxes fand g. The only way
to define a magnetic flux without a magnetic flux density is when the area R is infinite. Plane waves allow
for this possibility, but every beam of light has finite R. Therefore B® exists in every physical situation,
inciuding the vacuum, as a direct result of Whittaker’s work {1, 2}.

The Lagrangian (28) is invariant under the global gauge transformation (type one gauge transform):
¢, > e, o, —>e"o; (38)

but is not invariant in general under the local gauge transform of the second type {13}:

b, = e, (39
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* ANy *
¢z,_)ef(x)¢z.

(40)

So the longitudinal potential ¢ is physical and there exist physical longitudinal and time-like photons from
the well known canonical quantization of eqn. (27). This conclusion is contrary to the received view, which
bases canonical quantization on the Lorenz gauge interpreted with the Gupta-Bleuler condition, a procedure
which results in the view that only admixtures of time-like and longitudinal photons are physical {13}.

The neglect of Whittaker’s F and G is a major fault of twentieth century electrodynamics because
longitudinal waves and concomitant time-like waves are always present in the electromagnetic entity. The
objects known as “transverse fields” are derivatives of ¥ and G. Under certain circumstances, there can be
potentials without fields, but there can be no fields without potentials. So the potentials are more basic. The

most basic entities are ¥ and G.
FURTHER PROOF OF THE PHYSICAL NATURE OF fAND g.
The longitudinal four potential is defined by:
A =(=cV-f.f)
and if we try the usual U(1) gauge transform rule {13}:

Al —> Al +0%x

ie.
A, > A, ~Vx; ¢—>¢+-?—;t£
then
f—-) f—-ch; Veof —>V-f~l§2€—
c ot
and

jw::zﬂ—j%dz.

(1)

(42)

43)

(44

(43)

Therefore the quantity x is not random as required by the rule (42). Eqn. (45) is satisfied for example by:

x= xoei(mt—ch)

so that:
Af AP+ A

where
A* = i x,e® (1, k)

A=, edy)

(45)

(47)

(48)

(49)
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and
04y '=0; g, = 0. &y}
The net result is:
¢, = ¢, +iwxe”; (1)
if for example
A(O)
ixy = ——=(X ~iY) (52)
J2
then
b, —>29,
F—=2F (53)
G »>2G
and a field such as
_OF 106G

(54

= +
¥ 7 8X0Z ¢ oYor

doubles in magnitude. So the gauge transform (42) does not leave the field unchanged. The only possibility
is that 4" is physical and gauge invariant and that x = 0, since by definition, the usual view means that fields
must be unchanged.

It is concluded that the magnetic fluxes F and G are gange invariant and physical.

PHYSICAL POTENTIALS WITHOUT U(1) FIELDS

In the special casc of transverse plane waves:

f=1ig (55)
and the electric and magnetic fields can be represented by:
E=iV><(ng)+lV><g (56)
c
B=1Vxg-Vx(Vxg) )
c

Under the condition

Vx(ng):-l—-?-(ng) (58)
c ot
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then all components of £ and B vanish. This condition is satisfied by the equation:

A,
VxA, ' aat (59)
e
whose solution is
©)
Ay =_—‘:1/§ (i + je™ @2, (60)
This gives E =B =0;
A =—x —4(—(-])—()( iV)e D (61)
D)
A(o) . —i(01-x Z)
(F)L——O)—\/-;-(X—‘IY)G (62)
)
o=L_4_(x_ip)eciomn, )

7

So there can be both transverse and longitudinal physical potentials, and their concomitant time-like parts,
while there are no U(1) fields present. On the O(3) level it has been shown {11} that

B® =i 5 dG"dG _dGdG ),
AV gy dx dY dX
R R (64)
X [dF AR _dFdr)
T4\ gy dx dy dx

so B® is the only field present under condition (58), being the magnetic flux density associated with fand
g in the vacuum for finite R.

LONGITUDINAL STANDING WAVES IN THE VACUUM.

If we choose the solution:

A(O)
Np)

to the d’ Alembert equation: oG =0 (66)
the real part of eqn. (65) is:

G = (X——IY)(Q i{ot-x Z) +e—i(mt+KZ)) (65)

Re(G) = 5 A(°’(Xcoscotcos1<Z + Y coswtsink Z) (67)
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which is a standing wave {14} in the vacuum, along the propagation axis. Such waves do not exist in the
received view of electrodynamics {13}, but were pointed out by Barrett {12}. The overall result is:

(0
g=2—+(XcosotcoskZ +Y coswtsink Z)k (68)

Nz

which is a longitudinal standing wave which is a solution to the vibrating string problem. Since Whittaker’s
work originates in the Maxwell-Heaviside equations, these also give such waves, contrary to the
contemporary opinion {13}. The idea that electromagnetic waves must be transverse is clearly erroneous. For
example there can be interference between physical potentials when no fields are present. There can be
interference between transverse and longitudinal physical potentials and their time-like parts. This has
important consequences for physics and technology.
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