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B O D Y

Introduction

It is well known in differential geometry that the tetrad is defined by:

(1)V � � q�
� �V �

Here V �  is a four-vector defined in the Minkowski spacetime of the tangent bundle at
point  P  to  the  base  manifold.   The  latter  is  the  general  4-D  spacetime  in  which  the
vector is defined by V � .

The metric tensor used by Einstein in his field theory of gravitation (1915) is (Carroll):

(2)���
�S� � q�

� �q�
�����

In eqn. (2) ���  is the metric of the tangent bundle.  Eqn. (2) defines a symmetric metric
���
�S� , through an inner or dot product of two tetrads.

It is seen in eqn. (1) that there is summation over repeated indices.  This is the Einstein
convention.  One index � is a subscript (covariant) on the right hand side of eqn. (1).
Thus, written out in full eqn. (1) is:

(3)V � � q0
� �V 0 � q1

� �V 1 � q2
� �V2 � q3

� �V 3

Similarly, eqn. (2) is:

(4)���
�S� � q�

0 �q�
0��00 ��� q�

3 �q�
3��33

In eqn. (4) it is seen that all possible combinations of �, � are summed.



Another example is given by Einstein in his famous book “The Meaning of Relativity"
(Princeton, 1921-1954):

(5)���
�S������S� � 4

It  is  seen  that  the  double  summation over  �  and  �  in  eqn.  (5)  produces  a  scalar  (the
number 4).  In differential geometry a scalar is a zero-form.

It  is  seen  from the  basic  and  well  known definition (2)  that  is  possible  to  define  the
wedge product of two tetrads:

(6)���
� � q�

� �q�
�

The wedge product is a generalization to any dimension of the vector cross product in
3-D.  In eqn. (6) ����  is a two-form of differential geometry, i.e. a tensor antisymmetric
in � and �.  It is a vector-valued two-form due to the presence of the index c.  This is
the antisymmetric metric:

(7)���
��A� � ���

�

The antisymmetric metric is part of the more general tensor metric formed by the outer
product of two tetrads:

(8)���
�� � q�

� �q�
�

It is seen that the indices � and � are always the same on both sides, so can be left out
for clarity of presentation (see Carroll).

Thus we obtain:

(9)��� � q��q�

(10)���A� � q��q�

(11)��S� � q��q�����

This notation shows clearly that ���  is a tensor; ���A�  is a vector; ��S�  is a scalar.  It is
well known that any tensor is the sum of a symmetric and antisymmetric component:

(12)��� � q���S� � q���A�

Furthermore,  q���S�  is  the  sum  of  an  off-diagonal  symmetric  tensor  and  a  diagonal
tensor.  The sum of the elements of the diagonal tensor is known as the trace.

Thus, �c�A�  is the antisymmetric part of q�� :
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(13)���A� �
1
�����
2
������q���A�

In eqn. (11):

(14)��� �

�

�

������������������

1 0 0 0
0 	1 0 0
0 0 	1 0
0 0 0 	1

�

�

																		

thus:

(15)
��S� � q0�q0��00 � q1�q1��11 � q2�q2��22 � q3�q3��33

� q0�q0 	 q1�q1 	 q2�q2 	 q3�q3��33

and so:

(16)��S� � Trace q��

From eqn. (9), (13) and (16) it is seen that the existence of the antisymmetric metric is
implied by the existence of the symmetric metric.

Quod erat demostrandum.

In the notation of eqn. (2.33) of Evans, Chapter 2:

(17)
2 � 	
1
�����
2
�q���A��d u� � d u�

From the definition of the wedge product, eqn. (6), eqn. (17) is:

(18)
2 � 	
1
�����
2
�q���A��q��

�A�

and by comparison with Einstein’s eqn. (5), it is seen that 
2  is a scalar.

Quod erat demostrandum.
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