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Abstract

In general, the Maxwell equations can be solved with electric and magnetic fields which are sums of oscillatory
and static components, the latter being directed in the propagation axis of the electromagnetic plane wave, The
electrostatic and magnetostatic fields are described classically in terms of travelling delta functions, which in
qu:‘?mum field theory becomes a description of the magnetostatic and electrostatic fields generated by a photon
travelling at the speed of light in free space. The interaction of these fields with matter is investigated and the basic
equations of electrodynamics derived in terms of the travelling delta function formalism of the classical field.

Introduction

The Maxwell equations of classical field theory
can be solved to give electric and magnetic fields in
the form [1]

E .
EG:%(iiij)e”ﬁiEﬂk (1)
Bq—fﬂ('mi}ef%gk )
_\/-2‘ _] T

showing that in general, Maxwell’s equations in
free space support components in #, j and k, unit
vectors in directions x, y, and the propagation axis

z. The components

_ B
B.= 22+ Dk (3)
and

B
E, =+ 2=k @)

are independent of the phase ¢ of the electromag-

netiic plane wave and are responsible for several

*Cérresponding author.

observable effects. Among those due to B, are
optical NMR spectroscopy {2--8], the optical Zee-
man effect [9, 10], optical forward backward bire-
fringence [11], and several other related effects due
to the magnetizing properties of light [12], if B, is
real and E, is imaginary.

In the first part of this paper we investigate the
interaction of the novel fields E, and B, with mat-
ter (in the first instance an electron) using a repre-
sentation in terms of moving delta functions. The
interaction of B, with an atom is then explored in
terms of quantum field theory, in which the inter-
action hamiltonian is used in a Heisenberg equa-
tion to test for the presence of squeezing effects due
to E, and B,. Finally, the delta function descrip-
tion 1s developed based on the Fourier transforma-
tion of the E, and B, fields.

The delta function description

The delta function description of E, and B,
comes from the fact that the fields are generated
in free space by a travelling wave, which in the
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quantized description becomes a photon propagat-
ing at the speed of light. Therefore, £, and B, are
no‘i conventional electrostatic and magnetostatic
fields but are present in free space as parts of the
coﬁlplete solution of Maxwell’'s equations as
described in Egs. (1) and (2). It can be shown
that the phase-independent solution B, can be
related to the vector product

i+ )ExE*
Bvr”“:t \/§ EOC (5)
~—\/: :tlj)e‘¢ (6)
B*= i) ™)

an<;:1 c 1s the speed of light. Therefore the general
solution given in Eq. (2) can be thought of as a
nonlinear solution of Maxwell’s equation in free
space

G+ 1)ExE*
N (8)
ri)+ B, (9)

BG =L (jxii)e’ +

5 5[5‘:

BC =

In quantum field theory both B, and E, can be
expressed in terms of the standard creation and
anpihilation operators [1]

Re(B,) = :t;j;i (a4, ~ a,al)k (10)
Re(E,) = T o)~ 4,8k (1)

a description which shows that the fields are gen-
er ‘ted by the simultaneous creation and annihila-
tion of a quantum of energy hw/2w. They are
the}:refore produced with no net change in energy
in the quantized field. This argument is developed
in Ref. 1, where it is shown that £, and B, are
copsistent with the law of conservation of electro-
mz}xgnetic energy.

From Eqs. (5) and (9) it is clear that the novel
ﬁelds E. and B, are free space solutions of Max-
well s equations, and must be considered as being

present in a vacuum in the same way as the usual
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oscillating solutions E(r, t) and B(r, t). The source
of £, and B, is the same as that of E(r,z) and
B(r,t). Therefore, E, and B, are uniform, diver-
gentless, and time-independent [1] but cannot be
thought of in terms of conventional electrostatic
and magnetostatic fields. This is clear from a
description such as that of Landau and Lifshitz
[13] of the classical conventional electrostatic
field. We quote. “Electromagnetic fields occurring
i vacuum in the absence of charges are called
electromagnetic waves ... First of all we note that
such fields must necessarily be time varying”.
Landau and Lifshitz then go on to assert that an
electrostatic solution of Maxwell’s equations which
is not time varying is zero because of the absence of
charges and currents in free space. Their argument
is based on the relation

Es = —v(b (12)

between an electrostatic field and a scalar potential
¢ and the relation

o= |2 (13)

between the scalar potential and charge density p
(the Poisson equation). Thus, if charge is zero then
¢ 1s zero and the conventional electrostatic field E,
1s zero. The argument is based on Coulomb’s rela-
tion between E, and charge e

(14)

where R 1s the position vector of the point of
interest relative to charge e.

Clearly, therefore, the fields E, and B, intro-
duced and developed in Ref. 1 cannot be inter-
preted as electrostatic and magnetostatic fields
in the conventional electrodynamical theory. Yet
E. and B, are, at the same time, mathematically
valid solutions of Maxwell’s phenomenological
equations, and can, furthermore, be related to the
oscillating solutions of those equations through
Egs. (5) and (9) of this paper. It is therefore necess-
ary to provide a fundamentally new interpretation
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of E, and B,, one which distinguishes these from
the conventional interpretation of, for example,
Landau and Lifshitz. It is emphasized that both
E_ and B, are physically meaningful electric and
magnetic fields which propagate through free
space, and which interact with matter to give
observable phenomena such as optical NMR [2],
in which B, induces shifts in NMR resonances,
ShIftS which are too large to be explained by hyper-
polarlzabxhty induction mechanisms such as those
usq:d in the conventional theory of the inverse Fara-
day effect [1].

In this section we describe E, and B, classically
in terms of Dirac delta functions which are moving
in free space at the speed of light. Thus, more
rigorously, we define the electric field density

EY = f(‘ — 1)é(r — ro)k (15)
and the magnetic field density
B
BY = 2 (i 4 1)6(r — ro)k 16
\/5( )é(r —ro) (16)
where
5&"0) = 8(x — x0)8(y — »0)é(z — ct) (17a)

(Note that the magnetic field density B should
not be confused with the magnetic flux density B,.)
By‘ definition of the Dirac delta function, the fields
E_ and B, vanish unless x = xy, y = y;, and
z = ct, where ¢ Is the speed of light at an instant
1. Here k for E is a polar vector in z, and for B, an
ax%al unit vector in z, the propagation axis of the
laboratory frame (x,y, z). The scalar quantities Ey
an:d B, are amplitudes, as for the oscillating com-
ponents of Egs. (1) and (2).

By definition, the Dirac delta function obeys the
relation

|7 o6 - ayax = sta) (17b)

\
so|that the electric field E, is an integral over the
corresponding electric field density

E.(ro) = J°°

—cQ

E,(r)6(r —ry)d*r (17¢)
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The limit of integration need not be *oo: the
range of integration can be arbitrary, provided it
includes the point at which the § function does not
vanish.

It is seen that Eq. (17c) defines a field £, (ry)
which is differentiable, but which can be expressed
as an integral over the corresponding field density
function

E.(ry) = j EQd’ (17d)
Similarly
B, (ry) = J BOd%r (17¢)

In this section we show that these definitions are
consistent with the fundamental equations of elec-
trodynamics and are interpretable as electro- and
magnetostatic fields travelling at the velocity of
light, so that z is always defined by ¢r and both
fields vanish unless z = ct at the point (xg, yg) in
vacuo. The interaction of these fields with matter
is therefore fundamentally different from the
equivalent interactions of conventionally inter-
preted electrostatic and magnetostatic fields.

First, there exists in free space a scalar potential
density

E
@ =L
V2

qiﬁrd) = 0 & otherwise

(i—1)0(r—ro)k & z=ct

(18)

The potential ¢, is the integral over ¢9 (cf. Egs.
(17d) and (17¢)) such that

E,=-V¢, (19)

and this scalar potential exists in the absence of
charges and currents. Similarly there exists a vec-
tor potential defined by

B, =V xA, (20)

so that

J va,,ds=f{> A, -dl (21)
S C
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with the vector potential density
B
AY = 2+ 1)6(r —ro)k x R (22)

It is seen that the vector potential density is an
annulus in free space travelling at the speed of
light. Both #!9 and AY are defined without refer-
ence to a charge, and can therefore be nonzero in

free space.

Similarly, Gauss’s law in a source free region
Vx-E =0 (23)
Faraday’s law

0B

: =——" 24
V % E, B, (24)
and Ampere’s law

1 OF

| =—=—0" 25
V% By ct Ot (25)
are satisfied by E, and B, as defined in Egs. (17d)
anid (17¢).

The interaction of /9 and BY with an electron
is (%iescribed through the use of their respective real
parts in the Lorentz equation, so that the force
density is split into two parts

|
FO@) = FEO ) + F5 (1) (26)

the force between E; and e and B, and e. The two
force density components are described by

FO() = %5@ —ro)k (27)
an@
Fﬁ;‘”(z) = i%é(r —ro) Vo x k (28)

Therefore, the electron 1s accelerated and reaches a
velocity density
(d) (d)

e
=vo 00— x9)6(¥ = ¥o)

v

X {Eo Jdté(z —cty)k

+ BO Jdlé(z — Cfo) VO x k (29)
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where véd) is its initial velocity density. The trajec-
tory of the electron is given by an equation in
position density

(d) _ 4 4 (),

e
r' =ry’ + +—8(x ~ x0)8(y — yo)
m

X EOJJ; di'dié(z — cry)k
+BOJJ;dt’dt6(z— cty) Wy % k] (30)
which can be expressed as
r @ = réd) + Véd)t + i6(x — x0)8{y — »0)
mec

x [Egk + B Vy xk] (31)

Therefore, there is no effect on either E,r(d) or B}d)
unless the conditions x = xq, y = yg,and z = cf are
satisfied simultaneously. This can be interpreted to
mean that unless the travelling wave is defined by
these conditions, there is no effect on the electron.
Therefore, the photon and electron must both be at
this position for interaction to occur. Thereafter
the trajectory of the electron is described by Eq.
(31). Therefore, if E@ and B9 are nonzero
there should be an effect of a circularly polarized
laser beam or X-ray beam on an electron beam. In
particular an electron beam coaxial in z with a
circularly polarized laser beam should be acceler-
ated in z.

The quantum statistical nature of E, and B

It has been shown in Ref. 1 that both E, and B,
can be interpreted rigorously in terms of creation
and annihilation operators [4], and B, can be
related to the third Stokes operator [13] of the
quantized field. Through this relation, B, can be
expressed directly in terms of the angular momen-
tum of a single photon, defined as the expectation
value of an angular momentum operator between
the photon number states (1| and |1). In this for-
mulation of quantum field theory, the interaction
between the field operator 8, and an atom can be
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described in terms of an interaction hamiltonian
operator

= 2ma_a, —a.al) (32)

where ) is the atom’s magnetic dipole moment
operator.

The Heisenberg equation of motion can be used
to describe the interaction of B, and the atom
L 0o =~ s, ) (33)
Here the replacement of time by —n,Z/c has
occurred, as described in Ref, 15, so that the Het-
senberg equation becomes a description of the tra-
jectory of the annihilation or creation operator in
the coordinate z. Using the commutator relations

la,,a_al —a.al] =a_

[a_,a_a\ —a,al] = —a,
[al,a_al —a,al)=al

lat,a.al —a.al) = —al

34

leéds to the equations of motion
d oo
E&Jr(z) =14a_(z)

diz i_(z) = —iAd, (2) (35)

anom(l)

A=
‘ 2hc

which have the solution

a,(Z) +ia_(Z) = e*[a, (0} +ia_(0)] (36)
Similarly

&l (z) +ial (z) = e®[al.(0) +ia' (0)] (37)

for the creation operators. Separating real and
imaginary parts gives

ay(z) = eAzﬁi (0)

The existence of squeezing effects in the interaction
of E, and B, with an atom with a magnetic dipole
moment operator #y can now be investigated with

al (z) = @l (0)  (38)
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the usual time ordered and normalized quadrature
parameters [14, 15]

(AQYY) = ((Aa)”) + ([(Aa))D)

+2((a'a) — (@")(a)) (39)
and
(AP = (—((aa)”) — ([(Aa)T%)

+2((a'a)y — (a')(a)) (40)

squeezing being defined when one of these is less
than zero.

Fourier analysis of the delta function representation

By definition, the Dirac delta function is a Four-
ier integral of the type

5(r—ry) = J'ei“"e_i""*)dn (41)

(2n)’
which, applied to an electromagnetic plane wave
implies that x is the wave vector. At the point
r = ry, the Dirac delta function is therefore an inte-
gral over all wave vectors, or modes, of the electro-
magnetic plane wave. For a mode u,, Eq. (41) can
be rewritten as

8(r—ry) = Jun(r)u:(ro)dn (42)

The field densities E!Y and B! can therefore be
rewritten in terms of scalar mode expansions of the
plane wave

Buk8(x = o) = (Bok) | ()i (x5)d
BokS(y — 30) = (Bok) [uarluito)dn (@3
Bokd(z — ct) = (Bgk) Ju‘(z)u,‘c‘(cto)dn
Therefore it becomes clear that the representation
of E, and B, in terms of products of delta functions

1s equivalent to an integration over & of the scalar
basis field product u, (r)uf(ry).
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In the quantum field [14] the integrals are
replaced by sums

Boké(r — ro) = Bok e (r)uk(ro) (44)
over modes of the type

‘ Cin-r e—m r
u(r) = ux(o) = = (45)

where V is the quantum volume, and this provides
an opportunity of linking conceptually the deita
representations given in Eqs. (15) and (16) of the
classical field with representations in terms of
creation and annihilation operators (Egs. (10) and
(11)) of the quantum field theory. This is accom-
plished through a mode expansion of the quantum
field in free space, using the representation [14]

E(r0) = ED 0+ EO,
) = 3 Cun()n(0) (46)

EWQ—ZC (nai(o) = [EW (@, o1
where C, and C¥ are proportionality constants. It
is assumed in these expansions that the spatial
dependence occurs in the mode fields u,(r) while
the time dependence and quantum mechanical
operator properties occur in @, and &f\

ay(1) = exp (—ick1)a, (0)

(47)
d;(z) = exp (ick/\t)&f\(O)

Wy = Ck,\

These are oscillator variables with frequencies wy
ﬁz;ed by the eigenvalues of the Helmholtz equation,
i.e. by the spatial properties of the chosen basis
fields. Classically, they are generalized spatial
Fourier components; quantum mechanically, they
become operators in the Heisenberg picture, Eq.
(33) satisfying the equal time commutator

EXORNG)

Thus 4, and &) are annihilation and creation
operators for photons in the mode A. Using the
concept of mean number (ny) of photons in mode

= 6(\ ) (48)
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A, defined in the quantum field by

{@a}) = my8(A, X) (49)
where 6 is a Kronecker delta function, we arrive at
a definition of (B_) based on the quantum equiva-
lent of Eq. (3), 1.e.

(B Zhw,\,\ r)XuA(r)n,\

EOE()C

(B x EO))

o (50)

where u, and uf are vector quantities in mode X,
and where the summation is over all modes A,
Replacing this sum by an integral, and reverting
to the classical field, it becomes apparent that the
description given in Eq. (16) is the equivalent of the
field B,, in classical terms, through the delta func-
tion defined by Fourier transformation in Eq. (41).

The conclusion of this section is that the descrip-
tion of B, and E, in terms of creation and annihi-
lation operators has its classical equivalent in terms
of the delta function description of Egs. (15) and
(16).

Discussion

The B, field is the expectation value between
photon eigenstates of the field operator B,, which
can be expressed [1] in terms of creation and anni-
hilation operators as

. By . .
B, = > (Gyay, — a,a )k (51)
For one electromagnetic mode, this is equivalent to
the delta function definition introduced in the third
section (The quantum statistical nature of E, and
B.). This can be shown by separating the classical
B, as

B.(zy) = %Ork fw J: 7 B dkdz (52)
where

e’ g™ "%
e = 0) =)= (5
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are modes (see the fourth section (Fourier analysis
of the delta function representation)) of the plane
wave. Using the methods of the fourth section, the
transition from the classical to the quantum field is
accomplished by replacing the integral in Eq. (52)
with sums over photon modes, giving

By(z) = (Z Z ﬁx(zo)ﬁl‘(zo)) Bok (54)

Therefore the quantum operator B, is the sum
over all modes labelled &, and all points labelled z,
of the photon beam, multiplied by the amplitude By
and the axial unit vector k (not to be confused with
the wave number ).

For an electromagnetic wave in free space, it is
possible to make the identities

W
K=
c

z=ct (55)

where w is the angular frequency and c is the velo-
city of light. The modes d,(zy) and a%(zy) can there-
fore be written as

eiwz —iwzy
u, = 11,‘,(0)\/2_7r wh = u*(0) o (56)

Equation (56) can be compared with the definitions
of'creation and annihilation operators in quantum
field theory

al(1) = a'(0)e™ a(to) = a(0)e ™ (57)

We can compare Egs. (56) and (57) to give
At - i

U, =41a u,cziz

>

(58)
Vor e Var
so that

D Zﬁn(zoﬁﬂ%) =" d'(0a(n) (59)

If the wave 1s monochromatic, w is a fixed angu-
lar frequency, and the sum X, becomes super-
fluous. At this instant ¢ =1y, the sum over
becomes superfluous because we are concerned
with one instant only, defined at t = ;.
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This implies
B (1 = 15) = Bod'(1)a(1o)k (60)

Equation (51) is a particular case of Eq. (60) when
the combination of components is defined by

at(t)a(ty) =1 (a4l — a,al) = a.a! (61)
where we have used [1] the result
&.d) = —a,dl (62)

which comes from the result [1] that the classical B,
is defined through a vector cross product (see
Eq. (5)).

It is concluded that the quantum field theoretical
description (Eq. (51)), which is a consequence of
Egs. (5) and (57), is equivalent to the classical
description in terms of the delta function obtained
in the third section (The quantum statistical nature
of E, and B,) provided that the wave is monochro-
matic and provided that it is considered at the
instant ¢ = ¢y,. The latter condition is equivalent
to removing the phase dependence of the wave in
the cross product (Eq. (5)) of E and its complex
conjugate E*.

When discussing the physical meaning of B, and
E, it is significant to recall that in the relativistic
quantum theory of fields [16] the photon has four
polarizations in general, but only two helicities. It
can be shown [16] that B, and E, can be related to
physically meaningful expectation values over
timelike (0) and longitudinal, spacelike (1) polariz-
ation of the photon, in such a way that

B":B()k
BW'BTT:B%

En' = E[)IE
(63)
E . -E, =E

We have therefore shown that B, and E, are
physically meaningful magnetic and electric fields
and have self-consistently defined these fields in the
classical and quantum theories.

Application to the structure of atoms and molecules

Having shown that B, is a physically meaningful
field in free space it is possible to use it to investi-
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gate spectroscopically the structure of atoms and
molecules using several new techniques based on
the interaction of B, with the atomic and molecu-
lar magnetic dipole moment n1. The analytical
spectroscoplc techniques using B,, for example,
parallel those using a permanent magnetostatic
field B. Examples include optical NMR spectro-
sc&py [2, 6], the optical Zeeman and anomalous
optlcal Zeeman effects, optical ESR, the inverse
Faraday effect (magnetization due to B.), the opti-
cal\ Faraday effect (azimuth rotation due to B,), the
optical Cotton—Mouton effect and Majorana
eﬁ?cts due to B,, and optical forward backward
birefringence due to B,. All of these techniques
rely on molecular property tensors, and therefore
provide novel information on atomic and molecu-
Jar structure. The source of this novelty is that B_,
unlike a conventional magnetostatic field, is in
quantum theory an operator, so that the hamil-
tonian formed between B, and i, for example is
a product of operators. The use of B, for investi-
gating atomic structure is illustrated in this section
with the optical Zeeman and anomalous Zeeman
effects (spectral splitting due to B, of a circularly
polarized laser beam) and with the optical Faraday
effect (azimuth rotation due to a circularly polar-
ized laser beam).

The optical Zeeman effect due to B,

In the context of atomic structure and spectral
absorption lines, we consider in this first example
the splitting due to the operator B, of an atomic
'S —'P optical frequency absorption line by a cir-
cularly polarized pump laser. The interaction
energy between the pump laser and the atom is
thé expectation value

A8 = —(LJFMglr- B,|L'J'F' M) (64)

where r is the magnetic dipole moment operator of
the atom, proportlonal to an orbital angular
momentum operator L

-

m =L (65)
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through the gyromagnetic ratio v, as usual. The
quantum number F in Eq. (64) is defined by the
usual Clebsch—~Gordan condition
F=L+J,,(L—Jl MF:ML+MJ (66)
Using standard procedures it can be shown that
Eq. (64) can be written in the form

A&, = —gL7|Bxl (67)
where the Landé factor

SUF(F+1) - I +1) - LIL+1)] (68)

1S recognizable as that given by a simple vector
coupling model of the theory of atomic structure
in which the L and J quantum numbers of the
atom’s m operator and the photon’s B, operator
have been considered. A parallel development for
molecules is necessarily more complicated but
essentially follows the same principles.

Novel information about atomic structure is
therefore provided by the splitting pattern gener-
ated by B, of a circularly polarized pump laser. For
example, in the 'S ground state we have L = 0 and
we assume that J =1 for the photon. Therefore
F=1 in the !S state. In the 'P state, L =1,
J=1,and F=2, 1, 0. Transitions occur between
F = 1 ground state (' S) and the three F states of 'P.
Therefore, we observe three lines in this simple
example of an optical Zeeman effect in atoms. In
this type of spectrum, the circularly polarized laser
acts as a light magnet, which replaces the per-
manent magnet of the well known conventional
Zeeman effect. Furthermore, the splitting pattern
is different from that for the same atomic transition
in the conventional Zeeman effect. In the optical
Zeeman effect the pattern is

A& (F=0) = 2v,| B,
A& (F=1) = |8, (69)
AEL(F=2)= —7|B,h
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and in the conventional Zeeman effect it is
A§(My = 1) = | BJh

AE(M; =0)=0 (70)
AE(My = —1) = /Bl

i

I

We arrive at the important conclusion that B,
geherates a different pattern of Zeeman lines from
B bf a conventional magnet.

This means that the optical Zeeman effect is a
new source of information on atomic and molecu-
laf structure as studied by spectroscopic methods in
the gaseous phase of matter.

The anomalous optical Zeeman and optical
Paschen—Back effects

In the anomalous optical Zeeman and Paschen—
Back effects, the structure of an atom or molecule is
further elucidated by the involvement of electronic
spin angular momentum, and the spin quantum
mfmber S. The interaction energy (Eq. (64)) is
therefore modified to

AW = — % (SLJJ\FM flin- B,|S'L'T' T F' M)
(71)

where the magnetic dipole moment of the atom is
developed as

At = v, (L 4 2.0028) (72)

The theoretical prediction of the splitting pattern
expected in the anomalous optical Zeeman effect
depends on the coupling scheme chosen for the
various electronic angular momenta of the atom,
and therefore depends on the model chosen for the
atomic structure. In other words, the splitting pat-
teﬁn of the anomalous optical Zeeman effect
debends on the nature of the Landé factors emerg-
ing from the particular angular momentum coup-
ling scheme chosen to evaluate Eq. (71). The most
apbropriate scheme can be elucidated only by refer-
en(j:e to experimental data, generated by splitting an
atomic absorption line with a circularly polarized
pump laser generating 8, .

This shows clearly that B, provides novel infor-
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mation on atomic structure, in particular the way
in which the atomic angular momenta L, S, and J
interact in a coupling scheme. It is emphasized that
the splitting pattern is different from that of the
conventional Zeeman effect because B, is an opera-
tor of quantum field theory, and not a simple vec-
torial magnetostatic field.

The optical Faraday effect due to B,; optical MCD

In the optical Faraday eflect the operator B,
from a circularly polarized pump laser rotates the
plane of polarization of a probe laser which is
linearly polarized. In this context information is
provided about the internal structure of atoms
and molecules through the molecular property ten-
sors controlling the optical Faraday effect. The
optical Faraday effect due to B, is ubiquitous, i.e.
it occurs in all atoms and molecules in the gaseous,
liquid and solid states of matter. The generator of
the B, operator is the circularly polarized pump
laser, which can be pulsed to high intensity. The
effect is, furthermore, dependent on the frequency
of the linearly polarized probe laser, so that there is
generated, in principle, an optical magnetic circular
dichroism across a spectrum of frequencies. This
provides a new analytical technique of general
interest, which can be referred to as ‘“optical
MCD”. The origin of optical MCD in essence
can be traced to the semi-classical time-dependent
perturbation theory, which produces expressions
for the polarizability components as given in the
conventional theory of reduced matrix elements
of electric and magnetic transition dipole moment
operators. For a given circularly polarized pump
laser frequency the optical MCD spectrum is a plot
of the B, induced angle of rotation against the
frequency of the linearly polarized probe laser. In
other words optical MCD is produced in essence by
replacing the magnet of the conventional MCD
technique by a circularly polarized pump laser.

Again, it is important to note that the opti-
cal MCD spectrum is expected to be different in
general from the MCD spectrum under the same
conditions because the former is generated by the
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operator B, (described in this paper) and the latter
by fa magnetostatic field (a vector).

Optical NMR spectroscopy

This has been confirmed experimentally, in
essence, and has been reported in the literature
[Z]J It 1s the site-specific shift of NMR resonances
byia circularly polarized laser. The effect is small
but significant, because it immediately introduces
the possibility of a new analytical technique in
which the permanent magnetic field of the NMR
ins“trument is supplemented by the B, operator of a
circularly polarized laser. Optical NMR provides,
of 1course, novel and useful information on the
structure of atoms and molecules, including com-

pléx molecules such as proteins in solution,
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