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Chapter 9.

Brownian Dynamics Simulation

M.W. Evans and D.M. Heyes

Dept. of Chemistry, Bourne Laboratory
Royal Holloway and Bedford New College
Egham, Surrey TW20, OEW, U.K.

Classical Brownian Theory for Translational Diffusion

Brownian motion was observed originally as the seemingly unending motion of
pollen particles in suspension. Some of the theoretical background has been
described in Chapter 2. The most transparent description of Brownian Dynamics
is the Langevin equation,!-5 which in its simplest form (translational Brownian
motion) is

mv(1) = — mpPv(s) + F (1) (1)

where m is the mass of the pollen particle, S a friction coefficient, v the linear
velocity of the pollen particle, and F, the random or “stochastic” force on the
pollen particle due to the molecules of its surroundings. The latter are much less
massive and diffuse much more rapidly than the relatively heavy pollen particle in
suspension.

The technique of Brownian dynamics simulation soives the Langevin equation
directly, mimicking the random nature of the stochastic force on the right hand
side of Eq. (1).6-10

The mathematical and physical nature of Eq. (1) is fundamentally different from
those of the Newton equation and its deterministic relatives described in Chapter
2. There are inconsistencies in the earliest work leading up to the derivation by
Langevin which were first described by Doob.!!

Let X(t) be the x coordinate of the Brownian particle at time t. Einstein and
Smoluchowski treated!-S X(t) as a random variable and found the distribution of
{X(t)-X(0)} to be Gaussian with mean zero and variance a{7[. This treatment is
restricted to configurational space only, not the full configuration/velocity space.
The set of random variables {X(t)} s more accurately a temporally homogenous
differential stochastic process, known as a Wiener process. The sample functions
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X(t) of this process are continuous with probability 1. The difference {X(s+t) -
X(s)} has a standard deviation a|¢| and is of the order |z]Y2. This implies that
dX(s)/ds cannot be finite; i.e. that the velocity function of the Langevin equation has
no time derivative. However, this directly contravenes the fact that probability
hypotheses are imposed on F (¢), including relations between this random force
and v(t) in order to determine the velocity distribution. If such a deterministic
relation between force and velocity is assumed, then this implies that the velocity
must be differentiable, and in consequence cannot be described by a Langevin
equation equivalent to an Einstein or Smoluchowski diffusion equation. The
force is indeterminate if the acceleration, the total time derivative of the linear
velocity, is not defined. This means that the Einstein and Smoluchowski diffusion
equations are equivalent to a Langevin equation with the determuinistic acceler-
ation term on the left hand side undefined.

To remedy this fault it is necessary to consider the full configuration/velocity
space and the probability of finding the Brownian particle at time t with a given
velocity and position given these at the arbitrary initial t = 0. This probability
density function obeys Eq. (32) of Chapter 2. This leads to a consistent definition
of acceleration provided that the Langevin equation is interpreted in terms of
Wiener processes as summarized in Ref. £ for example. Using this interpretation,
the stochastic force of Eq. (1) is uncorrelated with the velocity of the Brownian
particle, and varies extremely rapidly compared with variations in its position. As
in Chapter 2 this implies that in a time interval At during which the velocity
changes infinitesimally, there is assumed to be no correlation between F(t) and F(t
+ At). In the Langevin equation the position vector is a random variable, i.e. one
which takes values with a given probability.

All these features must be consistently incorporated in a computer simulation of
Brownian dynamics, and the results of such a simulation must also be consistent
with known analytical solutions. For example, the velocity auto correlation func-
tion (a.c.f.) from Eq. (1) is 15

<v(t) - v(0) > =< v(0) v(0) >exp(— B1) (2)

an exponerntial.

Usually, there is another aspect to the computer simulation of Brownian motion
designed to render it more useful for the investigation of rheology of
suspensions!Z15 and related complex phenomena. Deterministic non-equilibrium
molecular dynamics (n.e.m.d.) computer simulation usually applies to essentially
single component molecular fluids, which evolve structurally on the picosecond
time scale. They shear thin at shear rates of the order of one THz, which are
experimentally unachievable. Shear rates of one Hz are normally used experi-
mentally on macromolecular suspensions of about one micron diameter per par-
ticle. The latter may be considered as Brownian particles analogous to pollen
grains. In these systems a detailed description of the solvent is not necessary for
an adequate rheological appreciation by computer simulation. The important
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property is that of the macromolecule or Brownian particle, which can be investi-
gated with Brownian Dynamics computer simulation. This was pioneered by
Ermak and McCammon,® and has been used widely since then for the investi-
gation of polymeric suspensions in particular. The extra aspect in these simu-
lations is the presence of another systematic force on the right hand side of Eq.
(1), which is the force on one diffusing Brownian particle due to the others in
suspension. In general, there are also other aspects due to configuration dependent
hydrodynamic terms, but to a good approximation these may be neglected
because at high shear rates they become insignificant in comparison with the
forces between macromolecules, Their full consideration requires the friction coef-
ficient and random force in Eq. (1) to become both position and time dependent,
so that the Langevin equation evolves into a Mori approximation of the Liouville
equation.!-51)

Algorithm

Based on the recent article by Heyes,6 a simple algorithm for shear flow in a
macromolecular suspension, and for Brownian dynamics in general is described in
this Section.

Let r, be the position of a particle at timestep n, F, be the net force on a particle
at timestep n, y be the shear rate, mthe mass of the particle, T the temperature, k,
the Boltzmann constant and h the time step. The algorithm for updating the
macromolecula coordinates is derived from that of Dotson® taking the limit of
Bh - oo

Tyl =Ty + AL, (3)

Considering the Cartesian components of Ar

= B Sl gy o
- +:;y,,<h))h )
pry = A ElO "

where
A(h)=ﬁ;+—2£i—ﬁ2 )

where the random forces F,, and S, are selected from an unbiased normal distrib-
ution. For the Cartesian component «
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< Fih) > = 2'"—1;:’1& (6)
and
<t > = (22 ) G o
This formulation is derived from the Langevin equation
mr(f) = F(1) + F() — Br(2) (8)

where F(f) is the deterministic and F(¢) the stochastic forces.

If the random force terms are omitted then the dynamics are diffusive or
“Stokesian.” However, the use of the complete Langevin Eq. 8 enables the limit of
zero shear rate to be considered.

Heyes has presented some resultsé of computations with a repulsive Lennard-
Jones potential ¢ to represent the excluded volume repulsive interactions, derived
from the force of the repulsive part of the Lennard-Jones potential

s =45y (7)" - (§)°} g

All quantities are written 1n terms of Lennard-Jones reduced units.6 The time step
was adjusted so that the maximum displacement due to the random force was
0.01 ¢. Other parameters in reduced units were p = 1.1; T = 1.0;and 8 = 2.5 x
104; equivalent to 10 um silica spheres in water at room temperature, The number
of molecules in the periodically repeated Brownian dynamics cell, N, was 108.
Shear boundary conditions were employed as described by Heyesé to maintain
continuity of velocity profile across the cell boundaries. The decay time for
momentum correlation for the Brownian particles is

—1 m
T, = =
p="F 3nan,

where 7, is the viscosity of the pure suspending medium. The Brownian structural
relaxation time is

371:03ns
dfpT

T, =

The Peclet Number, P,, equals }'Jr,/?_. The viscosity of the dispersion is
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Z Z - y,J(dczS,J/dr) w0)
where r.;

.y 1S the o’th cartesian component of the vector between particles i and j,

r;. The relative viscosity n, =7/, plotted against the Deborah number, the
product of the structural relaxation time 7, and the strain rate y, from the
Brownian dynamics simulation reproduces the experimentally observed behavior
as described by Heyes.6 Shear thinning is observed at shear rates of the order of
the inverse of the structural relaxation time for the fluid, as observed experi-
mentally for simple molecular liquids. It is found that Brownian forces hinder the
structural reorganization accompanying shear thinning. A phase change of dis-
persed particles occurs into a lattice with long range translational order in the
plane perpendicular to the streaming direction. The structural changes that take
place in the saturation regime of the shear thinning curves are very similar to
those observed in deterministic dynamics, the molecules forming into strings along
the streaming direction, packing into a distorted trigonal lattice.

Implementation for Flexible Protein Dynamics

This code is easily implemented for the Brownian dynamics of flexible macro-
molecules by adding a harmonic or anharmonic component to the right hand side
of Eq. (8). Two or more of the diffusing Brownian particles are linked together by
these spring forces to make one large diffusing flexible macromolecule. This is a
rudimentary method of looking at flexibility in diffusing proteins, and can be
extended to complex geometries by using Brownian particles of different mass and
linking them together by springs according to a given geometry. The linked
Brownian particles diffuse as an entity and rotational and translational properties
may be investigated at equilibrium and in the presence of shear.

This has the added advantage of avoiding the complexities!-S of rotational
Brownian motion in asymmetric tops, where solutions are very complicated and
insufficiently worked out analytically.

Rotational Brownian Motion of Non-Spherical Particles

So far we have dealt with translational Brownian motion of the center of mass of

a diffusing particle. The theory of rotational Brownian motion is based on the
Euler Langevin equations

A(Z)l_(A~C')w2a)3=—-C1Acul +AW] (lla}
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Bwy — (C — A)w w3 = — {yBw, + BW, (11b)
Cws — (B — A)w,w; = — {3Cwy + CW; (Lic)

where A, B and C are the principal moments of inertia of the Brownian particle,

and the torques 43, and so on are independent Wiener processes. The angular
velocity components w, and so on are defined with respect to a frame of reference
(1, 2, 3) fixed in the principal moment of inertia axes of the particle. It is implic-
itly assumed that the components {; and so on diagonalize in the same frame.
This is a general approximation.
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Figure 1. Position correlation function for zero Peclet number (inserts a, b, ¢, d) and

force correlation function for a Peclet of 16.98, diagonal and off-diagonal elements
(inserts e, f, g, h, 1).
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Figure 2. Correlation function for a Peclet number of 16.89: position, (a, b), and force {c,

d, e, f).
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The solution of Egs. (11a), (11b) and (11c) requires the Jacobian elliptic functions
because they are adaptations of Euler’s equations ( see chapter 2). There is no
exact analytical solution in general and the approximate solutions are compli-
cated. They are expressed in terms of three phenomenological variables, the three
friction coefficients. Nonetheless, this 1s the simplest type Langevin equation that
can be written for a rotating Brownian particle that is an inertial asymmetric top.
The complexity of the problem is reduced, but not eliminated, for the spherical
top, where A = B = C.

It is immediately clear therefore, that in the treatment of complex flexible
Brownian particles, it is far more straightforward to proceed with Eq. (8) with an
extra harmonic term on the right hand side of the form Syr where S is the
Hooke’s Law spring constant (see Appendix 2A, Eq. (A4)). This can be made
anharmonic if necessary, and a term such as this forms flexible bonds between the
diffusing Brownian entities, which may be regarded as parts of the overall protein
structure or even individual atoms. The diffusion of the complete protein segment
may then be mimicked by modelling the bonds with harmonic oscillator terms of
this nature, superimposed on the individual atom to atom repulsive and attractive
terms derived ab initio. Ultimately, the anharmonijc vibrational bonds between
atoms could also be derived ab initio.

Description of Results

For no shear applied (zero Peclet number) the results are described in Fig. | for
the correlation tensor of position and force. Figure 1 (a,b,c,d) shows that there is
a constant correlation between the components of the position correlation tensor,
introduced by the non-equilibrium molecular dynamics simulation algorithm
described already. The force auto correlation functions, Fig. 1 (e,f,g,h,i), are also
anisotropic and there is an initial correlation [Fig. 1(g)] between the X and Y
components. There is no such correlation, however, between the other compo-
nents of the force, in marked contrast to the results for the positional correlation
tensor.

Results for a Finite Peclet Number

The basic Brownian simulation program contains a facility for applying shear as
measured by a finite Peclet number, defined already. Time correlation tensors are
given in this section for Peclet numbers 0.00 and 16.89. These results characterize
Brownian dynamics under applied shear. The runs were repeated with a Peclet
Number of 16.89 and the results are illustrated in Fig. 2. There is a discernible
sharpening of the cross correlation function features due to an imposed shear.
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