Journal of Molecular Liquids, 39 {1988) 25-42 25
Elsevier Science Publishers B.V., Amsterdam - Printed in The Netherlands

THE STATISTICAL CORRELATION BETWEEN ROTATION AND TRANSLATION IN A DILUTE GAS
3 +
M. W. EVANS and G. J. EVANS

Department of Physics, University College of Swansea, Singleton Park,
Swansea SA2 8PP
+ Department of Chemistry, University College of Wales, Aberystwyth, SY23 INE
{(Received 11 May 1987)

ABSTRACT

The rotation and translation of a molecule in a dilute and moderately
compressed gas are shown to be correlated statistically in the laboratory
frame of reference (x,y,z) and the frame of the principal molecular moments
of inertia (1,2,3). This means that in the classical limit it is no longer
sufficient to base a kinetic theory of, for example, line broadening, on
the factorisation of energy into rotational and translational components.
Various types of cross-correlation are demonstrated in both frames of
reference for oxygen dichloride in the dilute gas and for chlorine dioxide
in the moderately compressed gas.

If we introduce the concept of quantum translation then it is possible
that the existence of this type of cross correlation function in quantum
mechanics might lead to the appearance of new absorption lines which are
not accounted for in the theory of rotational absorption. The experimental
detection of such lines could serve as the first evidence for the existence

of quantum translation.
INTRODUCTION

There does not seem to exist at present a kinetic theory of gases which
takes into account the fact that the molecules in a gas both rotate and
translate. The present available theories, such as the M and J diffusion
models of Gordon [1-4] are incomplete in the sense that only the net
rotational motion is described, and the centre of mass linear velocity is
left out of specific consideration. Recent computer simulations in the
liquid phase have shown [5-10] that the statistical correlation between

molecular rotation and translation can be observed in detail in the frame
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of reference defined (see eqn. (1)) by the three principal axes of the
molecular moments of inertia, (1,2,3). In this paper the investigation is
extended to the compressed and dilute gas phases of chlorine dioxide and
oxygen dichloride, two simple, triatomic, asymmetric tops. The computer
simulation algorithm is adapted for this purpose from a standard constant
volume algorithm designed for liquid phase studies. The results for

standard auto-correlation functions such as those of the molecular linear
velocity, angular velocity, orientation and rotational velocity for the dilute
gas indicate that the computer simulation method produces the expected -
theoretical results for the dilute gas, when these are known. For example

the orientational and rotational velocity autocorrelation functions are Kummer
functions, as expected theoretically [11], and the linear velocity and angular
momentum autocorrelation functions decay very slowly. Therefore the use of
periodic boundary conditions does not seem to be a problem, even for
simulations of a dilute gas. Having established this the computer simulation
method is used in this paper to investigate dilute gas properties which do not
seem to be known in kinetic theory, such as the purely rotational M and J
diffusion theory. These include a variety of cross-correlation functions
between rotation and translation, and also auto-correlation functions in

frame (1,2,3) and also in frame (x,y,z) which involve both rotational and
translational variables simultaneously. Therefore the simulation provides a
great deal of extra infeormation which is not available in conventional kinetic
theory of dilute gases [12]. This information involves the moving frame of
reference and the molecular centre of mass linear velocity directly. The
existence of such moving frame cross-correlations poses the following
questions:

i) Is it possible to develop a theory of collision broadening which is
capable of describing experimentally observable features (e.g. in the far
infra red) [13] self-consistently with the cross-correlations given here for
the first time?

ii) Do some of these cross-correlations and autocorrelations appear directly
in frame (x,y,z) and if so under what conditions? How do they influence

experimentally observable properties [14] in the gas phase?
COMPUTER SIMULATION ALGORITHM

For each of the two molecules a sample of 108 molecules was used with
standard periodic boundary conditions (15], and a time step of 5.0 x 10‘15
sec, small enough to produce a satisfactory constant total energy. TFor each

sample this quantity remained constant to well below 0.017.



THE MOLECULES

Both chlorine dioxide and oxygen dichloride are triatomic asymmetric
tops in which the mass distribution is fairly isotropic around two axes.
They are both nearly symmetric tops. The pair potential for each molecule was

generated with the same Lennard-Jones atom-atom terms [16].
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Chlorine dioxide was simulated in the mildly compressed gas at a molar volume
corresponding to a density of 0.309 gm per litre at 284 K. The bond length
was 1.49 R with a known {17] included angle of 118.50. Oxygen dichloride was
simulated at 273 K with a density of 0.0389 gm per litre in the dilute gas

at 273 K. The literature bond length is 1.70 2 and the included angle is
110.8°. The mass of the chlorine atom is about twice that of the oxygen atom
and in consequence the moment of inertia distribution is such that each
molecule is nearly a symmetric top.

With these atom-atom Lennard Jones parameters the total energy in the
computer simulation was satisfactorily constant at a slightly positive value
for chlorine dioxide and a more positive value for oxygen dichloride,
indicating that both samples were in the gas phase, the positive kinetic
energy being numerically greater than the negative potential energy so that
the repulsive forces predominate over the adhesive in the simulation. The
uncertainty in the pressure was also far less than that normally encountered
in the simulation of a liquid at constant volume, a further indication that
the sample is in the gas phase.

For each molecule the simulation was used to construct a variety of
auto- and cross-correlation functions in frames (x,y,z) and (1,2,3), using at
least two segments of about 2000 time steps each (1000 records of two time
steps each). The auto-correlation functions of the Coriolis, centripetal and
non-uniform forces [18] were built up in the same way in both frames (x,y,z)

and (1,2,3).
RESULTS AND DISCUSSION
Oxygen Dichloride in the Dilute Gas
Fig. (1) illustrates clearly the effect of the rotating frame on the

centre of mass linear velocity auto-correlation function, which in frame

(x,v,2) is a very slowly decaying function of time. The effect of the moving
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Figure 1. Linear velocity auto-correlation functions for dilute oxygen

dichloride gas. (x,y,z) Laboratory frame auto-correlation function.
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frame (1,2,3) is to make the three component linear centre of mass velocity
a.c.f.'s in this frame decay anisotropically and much more quickly than in
frame (x,v,2z). This is because frame (1,2,3) is rotating and translating
simultaneously. This is one of the effects that a fuller and more complete
kinetic theory of molecular gases should attempt to match. Note that two
components of the moving frame component autco-correlation functions in fig. (1)
are nearly equal in time dependence, the third, component 3, is very different.
The basic reason for this is that oxygen dichloride is nearly a symmetric top.
Fig. (2) is the equivalent of fig. (1) for the molecular angular velocity
a.c.f. In the laboratory frame (x,y,z) this decays more quickly than the
centre of mass linear velocity a.c.f. of fig. (1), but again the components
in the moving frame are anisotropic and have different time dependences. This
is a clear indication that linear velocity is having an effect on the rotational
velocity in the moving frame running-time averages. This is basically
important for the development of the theory of Brownian motion to involve the
linear velocity, v, on an equal footing with the angular velocity w in the

moving frame (1,2,3) in which the Euler/Langevin equations are written. This
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Figure 2. Angular velocity auto-correlation functions for dilute oxygen
dichloride.
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is also basically true for kinetic theory in anything except the mathematical
limit of free rotation. This limit only applies in an infinitely dilute gas,

where the total energy is kinetic energy, the intermolecular potential energy
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having vanished. Only in this limit is translation uncorrelated from rotation.

For the rotational velocity auto-correlation functions the computer
simulation provides results reminiscent [11] of the Kummer function for the
symmetric top. Similarly for the orientational auto-correlation functions.
This is strong evidence for the fact that the algorithm is producing the
correct theoretical curves {the Kummer functions) in the limit of dilute gas
dynamics. Of course the Kummer functions only apply strictly speaking in
the infinitely dilute gas, but the simulation of oxygen dichloride reported
in this paper is carried out under conditions where collisions are still

effective, but which are at the same time approaching the free rotor limit.



30

In recent work [5-10] computer simulations of molecular liquids have
uncovered the existence of several different types of cross-correlation
function which can be observed in frame (1,2,3). In addition, some auto-
correlation functions involving both the rotational and linear velocity, such
as the a.c.f. of the molecular Coriolis acceleration, can be observed in both
frames (x,y,z) and (1,2,3). This means that the accepted analytical
descriptions of molecular dynamics, both via kinetic theory and Brownian motion,
are very restricted in scope. The present authors have made attempts to
extend the theory of Brownian motion to rototranslation, and have produced a
set of Langevin equations for this purpose [8]. However there is no method of
solving these analytically except perhaps with the usual drastic assumptions of

Brownian motion theory {19]. TFig. (3) illustrates one of the cross-correlation
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Figure 3. Cross-correlation functions for compressed chlorine dioxide gas in

the moving frame of reference.
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functions from the present simulation in frame (1,2,3). This is the cross-
correlation in frame (1,2,3) (see eqn. (1)) between the Coriolis linear
acceleration in that frame and the same molecule's linear centre of mass
velocity in that frame. It is important to the development of a more

comprehensive kinetic theory of gases because it is a fundamental molecular



cross-correlation function which the theory cannot describe. 1In other words

a comprehensive kinetic theory of gases would be capable of producing
experimental data, but would also be capable of generating non-vanishing
cross-correlation functions entirely self-consistently. Therefore the time
dependence of fig. (3) is a fundamental challenge to the analytical theory.
There seems to be no contemporary method of producing this result analytically
from the kinetic theory of imperfect gases, i.e. the theory of collisional
broadening. Nevertheless the amplitude of the c.c.f.'s in fig. (3) is very

large, much greater than that observable in liquids, reachinp some 25 per cent

of the denominator. This means that the conventional theory of kinetics in

imperfect gases has a major defect in that it cannot be used to describe a
variety of results from the computer simulation. Similarly fig. (4) shows
equivalent results to fig. (3) for the cross-correlation function
<£(t)xg(t)£T(o)> in frame {1,2,3) and fig. (5) for the c.c.f.
co()x(w(t)xr(t)) (wlo)xr(0)) >,

Here r is the position vector of the centre of mass of the molecule. It
is defined in frame (x,y,2) in such a way that themean <r(t)> over the 108
molecules in the ''cube' vanishes, and alsc the correlation function be

defined as:

<£(o).£(0)>/<r2(o)>

]

1

cx(t).z(0)>/<r2(0)> te 0

The vector r may be defined in frame (1,2,3) by eqn. (1), with A = r.

The general synopsis for kinetic theory becomes even cloudier in
figs. (6) and (7), where the auto-correlation functions of the Coriolis,
centripetal and non-uniform molecular forces are shown for illustration in
both frames of reference (see appendix 1). These results show that any theory
which leaves out of consideration the linear velocity is not complete even in
the laboratory frame (x,y,z). It is useful to note in figs. (6) and (7)

that the second order a.c.f.'s.

v(B)xw(t) . v(t)xw(t)xw(t)v(o) . v(o)xul(o)>

Ceorz = (v(o) w(o).v(o)xu(a))2>

<r(t)xw(t).c{t)xalt)r{o)xelo). r(o)xw(o)>

C
num2 9
<(rlo=xi(o).rlo)xala))™>

are identical in both frames to five places of decimals. This shows that
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Figure 4  Cross-correlation functions for compressed chlorine dioxide
gas in the moving frame of reference.
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Figure 5 Cross-correlation functions for compressed chlorine dioxide

gas in the moving frame of reference.
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Tigure 6 First and second order autocorrelation functions of the non-
unform ma(t)xr(t) in the laboratory and moving frames of reference: oxygen
dichloride

1) TFirst order a.c.f. in the laboratory frame (x,y,z)

2) First order a.c.f. in the moving frame of reference (1,2,3).

---------- Second order a.c.f. in both frames.
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Figure 7 First and second order autocorrelation functions of the

Coriolis force 2mv(t)xw(t) in the laboratory and moving frames of reference:
oxygen dichloride

1) PFirst order a.c.f. in the laboratory frame (x,y,z)

2) TFirst order a.c.f. in the moving frame of reference (1,2,3)

———————————— Second order a.c.f. in both frames.
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the algorithms generating these data are correct, because the second order
a.c.f. is a scalar in both frames, and therefore invariant to frame
transformation. This is important evidence to show that the auto-correlation
functions being computed in this paper are not numerical artifacts, because the
expected result in respect of the second order functions is achieved to

better than five decimal places in both frames of reference. The laboratory
frame results in figs. (6) and (7) therefore show that the kinetic theory of
imperfect gases is basically lacking in the consideration of laboratory frame
autocorrelation functions which show up for the first time in this computer
simulation. It is interesting-to note, furthermore, that the a.c.f.’'s of

the non-uniform force on r(t)xw(t) have a similar time dependence in both
frames, with what appears to be a long negative tail, but the a.c.f.'s of

the Coriolis force, ZmVXw. have a very different time decay, that in the moving
frame (fig. (7)) being much the faster, in line with the laboratory and

moving frame behaviour of the a.c.f.'s taken individually of v and w,
CHLORINE DIOXIDE

A similar pattern of statistical correlation between dynamical variables
also exists for chlorine dioxide in the moderately compressed gas and in
this section we concentrate on a new type of cross-correlation. This is
illustrated here for chlorine dioxide but also exists for oxygen dichloride.
This correlates the orientational vectors and their time derivatives into the
centre of mass linear velocity, v. The investigation begins in this paper with
the simplest type, a three by three tensor whase elements in the moving frame
of reference may exist for t > 0 depending on the molecular geometry and point
group symmetry (see appendix 2). This type was first introduced by Ryckaert et
al. (201 and by Evans et al. [21] for cross-correlations between the molecular

angular velocity w and v. The computer simulation results of this work for the

cross-correlation functions:

T T T
ep(B)vi(o)>y 5y 5 <y (Blvled>py 5 3y 5 <eqlty (0)>() 5.3y >

. T . T . T
<gl(t)g (°)>(1,2,3) ; <gz(t)1 (°)>(1,2,3) ; <93(t)1 (0)>(1,2’3)

where e1r &y and e, are unit vectors in the axes 1,2 and 3 of the principal
molecular moments of inertia, show that some of the elements of these cross-
correlation tensors do in fact exist for t > 0. This allows us to conclude
that the reorientational dynamics of these asymmetric tops are not statistically

independent of the linear centre of mass velocity. This result may or may not
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be implied by theories of hydrodynamics, such as those of mode/mode coupling
used in the theory of light scattering in liquids, but it seems that this is
the first evidence from direct computer simulation at a single molecule level

of their existence.
CONSIDERATIONS OF FRAME TRANSFORMATION

Some care needs to be taken in defining the orientaticnal unit vectors

e, and their time derivatives in the moving frame of reference. In

g0 520 23
general the vector A can be transformed from frame (1,2,3) to frame (x,y,z)
and vice-versa using cartesian transformation. The components of the vector
A in frame (1,2,3) are generated from those in frame (x,y,z) for each

molecule of the ensemble as follows:

Al - Axelx * Ayely + Azelz

A A e + A e + A e

3 X 3x y 3y z 3z

]

This transformation can be carried out for each of the orientation vectors

and time derivatives which are therefore defined in frame (1,2,3) by:

(el)l T C1xClx * e1ye1y * ©12%12

(e)y = ey T eyy T o8, =0 2

(edy = eppeq, T eyl T ey, =0

(82)1 - ®2x®ix M e2yely * €22%12 T 0

(ep)y = epyeay ¥ Bay®ay * 9,0, 3

(eg)y = eyeq Fegeq  tege,, =0,

(83)1 = ®3x%1x + eByely * ®32%12 © 0

(e3)y = egpep * egy8p, * o385, = 0 4

(e3)3 T ®3x®3x * e3ye3y * ©32%32 ’

(=8 T eiy®ie t 81p%1x

(el)2 T ®1x%2x + e1ye2x t eleZX 5
Cy L . .

(el)B ®1x%3x + elye3x ®12%3x ’
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(62)1 T ®2x®ix * e7yelx * €22%1x

(&))5 = ep®an T 2oy t ©22% (6)
N . Vo

(6))3 = ey eg, + &y g + 8503,

(€)) = eqpey F e, F é3.8

(8)2 T ®3x%2x * e3ye2x * €32%22 (7)

(83),= €83, F eq.03, T €3,

From basic physical considerations each of the vectors e and e., have no

1’ 222 3
components in mutually orthogonal axes of frame (1,2,3), but this is not
necessarily true for the time derivatives él’ éZ and gj. These derivatives
are important in the theory of far infra-red absorption by molecular liquids
and can be generated from the orientation vectors through the basic kinematic

relations:

. (8)
[ (x,y,2)

of the laboratory frame (x,y,z). These kinetic relations are true irrespective
of whether the centre of mass of the molecule is moving or not. Therefore the
cross-correlations between the derivative vectors él’ éz, and §3 and the linear
centre of mass velocity v are in one sense triple correlations between the
orientation vectors er & and eqs the molecular angular velocity w and the
linear velocity v; all vectors defined in the moving frame (1,2,3). This
triple correlation involves orientation, angular velocity, and linear velocity
and it is but a small step to extend the analysis conceptually to triple
correlations between vibration, rotation, and translation in frame (1,2,3).
In the first instance the vibration along the orientation vector could be
treated classically, for example with Hooke's Law.

Figs. (8) and (9) show the non-vanishing cross correlation elements
in the moving frame between the rotational velocity vectors and the linear
centre of mass velocity. It seems that for each of the principal rotational
velocities two elements of the cross-correlation function matrix exist above
the noise in figs (8) and (9) for the slightly compressed chlorine dioxide
gas. This has the consequence that the infra red spectrum of the compressed
gas is never purely rotational in origin, and must always be a compound,
statistically speaking, of rotation and translation. This criticises the

usual approach to infra red spectroscopy where the energy of a gas phase

molecule is treated as if it possessed several distinct reservoirs of energy
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so that the total energy may be split up between different reservoirs.

It is well known that in this theory rotational spectra should consist
of a simple set of lines at frequencies given by 2BJ (for linear and symmetric
top molecules). This is a great over simplification, and real spectra consist
of many more lines. Rotation-vibration coupling within a molecule is equally
well known to result in the splitting of quantum lines (Coriolis splitting and
1 type doubling), and the coupling of whole molecule rotation with nuclear
orientation is well known and developed theoretically and experimentally.
These effects are all present in the infinitely dilute gas. In the imperfect
gas (in all practical situations) the results of the classical computations of
this paper show that there is strong statistical correlation in the laboratory
and moving frames of reference between the rotation of the whole molecule
(assumed rigid) and the translation of its own centre of mass. This effect
appears in the moving frame in a variety of ways and in the laboratory frame
through the existence of the auto-correlation function of the Coriolis force
generated bty the combined rotational and translational motion of the molecule.
This Coriolis force (which should be distinguished very carefully from the
well known intra molecular Coriolis force in a vibrating and rotating molecule)
can only be significant when the moving molecule encounters, and is
influenced by, the force field of other molecules in a thermodynamic ensemble.
If it is possible to treat translation as being quantised in the same way as
rotation then it should be possible to evaluate the quantum mechanical
equivalent of the classical Coriolis, non-uniform, and centripetal forces
discovered in this work and to establish a new theory of quantum spectroscopy
in imperfect gases. It should then be possible to discern whether the hypo-~
thetical quantum translation to rotation correlation results in the appearance
of new spectra lines which could be discerned experimentally. In the
classical simulation of this paper there are ne quantum lines, of course,
and in the classical limit the effect of considering translation in a
rotational theory would be to broaden and sharpen continuum spectra in the
far infra red, such as those actually observed experimentally in moderately
compressed gases. The effect of hypothetical quantum translation on dilute gas
spectra might be to break selection rules and to cause multiplicity in high
resolution spectra such as those obtained by infra red radio frequency double
resonance. The situation would be of particular interest in chiral gases, where
the cross correlations would be different in frame {(1,2,3) for the enantiomers
and the mixture. Some experimental evidence is already available [14] for this
effect in a recent infra red/radio frequency double resonance investigation
of the enantiomer and racemic mixture of a chiral vapour. This then might well

turn out to be the first evidence for the existence of quantum translation
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in dilute gases or compressed vapours. This is because there seems to be [14]
more lines in the far infra red/radio frequency spectrum of the enantiomer
than the racemic mixture for some pump laser frequencies and less for others.
There is no classical explanation for this effect, which, however, awaits
corroboration.

With the use of quantum mechanics in computer simulation the above
approach could be verified by direct numerical investigation, using quantum

mechanics both for translation and rotation.
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APPENDIX 1

On the Existence in Frame (¥,y,z) of the Non Inertial Linear Velocity and

Accelerations

Confusion sometimes occurs concerning the existence in frame (x,y,z) of
the dynamically non inertial linear velocity and linear accelerations, typified
by the centripetal or Coriolis acceleration. The nomenclature in this context
is misleading due to historical development, the accelerations being known as
the "pseudo accelerations'. They are '"pseudo" because they do not appear in
the three laws of motion of Newton, which operate in dynamically inertial
frame of reference. This does not mean that they do not exist. Many texts on
dynamics go to great lengths to emphasise that the Coriolis acceleration is
real, and so is the centripetal acceleration (18]. They occur whenever there
is rotational motion superimposed upon Newtonian velocity or acceleration.

The purpose of this appendix is to attempt to show as clearly as possible the
origin of these acceleration, and to show that they exist in frame (x,y,z).
Eqn. (1) then implies immediately that they also exist in frame (1,2,3) simply
by setting the genéral vector A of that equation to centripetal acceleration or
Coriolis acceleration as the case may be.

The nature of the non inertial velocity, accelerations and higher time
derivatives thereof is revealed the most clearly by using [8] a frame of
reference (1,2,3)' whose origin is the same as the origin of (x,y,z) but
which rotates with respect to (x,y,z) with an angular velocity w. It follows
that (x,y,z) rotates with respect to (1,2,3)' at the same angular velocity,

a seemingly trivial but important corollary. With this frame definition it

is possible to bring into consideration a basic theorem of dynamics linking
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the differential operator D¢ in the frame (x,y,z) to its (Qm) counterpart in
frame (1,2,3)'. If the operations are on the molecular centre of mass position

vector ¢ then the theorem is
D.r = (D + wx)r (A1)
and its corollary is
Dr = (D, - wx)r (A2)
“m— =f - =
These equations can be written in the more familiar notation:

(

(v +

ik,y,z) = texzlo o ogy (A3)

[!](1,2,3)' = [! - EXE](X,_Y,Z) (Al'>

Here [v] is the linear centre of mass velocity defined with respect
- (X1sz)

to frame (x,v,z). Eqn. (A3) shows that this is equivalent to a sum of two

terms in frame (1,2,3)'.

These are the Newtonian velocity [v] d

(1,2,3)* 2"
the non inertial linear velocity [gxg](l 2.3 each defined with respect
to frame (1,2,3)'. The importance of the corollary, eqn (A4), is that the
reverse is true, implying the existence of the term [gxgl(x y ) in the

laboratory frame (x,v,z). This the non inertial linear velocity, which has

the same dimensions as the Newtonian linear velocity [v] It follows,

(x,y,2)"
quid erat demonstrandum, that the non-inertial linear velocity exists in
frame (x,y,z) and is a real velocity in that frame. Tt vanishes only when
there is no rotation i.e. when w = 0. We then have inertial dynamics for

which Newton's laws are valid.

THE NON INERTIAL ACCELERATIONS

These are generated by operating twice on the r.h.s. of egn (Al) and

(A2) with the appropriate differential operators, giving:

Qf(QfE) E (Qm + Ex)[gm + wx)r] (45)
and conversely
D (D r) = (D - wx)[D - wx)r] (A6)

or, in more familiar notation:

(V] (A7)

v+ 2uxy + wxr + oox(exel

(x,vy,2) = 1 ,2,3)!

(91 () 9 3yr = [ - 2wxy - dxr + wx(oxe) ]

X,¥,2) (A8)

Eqn (A8) shows that in non inertial dynamics the Newtonian acceleration

(

g](x v,a) is supplemented by three additional non inertial linear accelerations.
) >



Two of these are known by hisotrical development as

1) the Coriolis linear acceleration; - 2wxv

2) the centripetal linear acceleration; wx(wxr) ;

and the third we denote by the 'non uniform" linear accleration; - wxr.

The corollary (eqn. A8) to the frame transformation theorem (eqn. (A7)
shows that the three non inertial linear accelerations exist directly in
the laboratory frame (x,y,z) for w = 0.

The non inertial linear accelerations may be illustrated with a few
examples. The Coriolis acceleration cperates on an object moving on the
earth's surface because of the rotation of the earth about its axis. The
acceleration is in opposite directions in the northern and southern hemispheres.
Similarly the linear Newtonian acceleration at instant t of the centre of mass
of a rotating molecule feels a Coriolis acceleration due to the angular velocity
of the molecular. One of the ways of perceiving this is to rotate frame
(1,2,3)' at the molecular angular velocity w with respect to the laboratory
frame (x,y,z). This means that we can view the laboratory frame (x,y,z) as
spinning with respect to the molecule with the same angular velocity. The
laboratory frame is therefore a non inertial frame with respect to the
translation of the molecule's centre of mass in frame (x,y,z). The laboratory
frame stops spinning only when the angular velocity is zero taking us back to
Newton's original concept. Any Newtonian linear velocity or acceleration in a
spinning (x,y,z) frame must be supplemented by additional terms, the
Coriolis linear non inertial acceleration being one of these.

For each molecule in the ensemble there are three non inertial linear
accelerations, distributed according to the laws of statistical mechanics.
Correlation functions of these accelerations therefore exist in frames
(x,v,2z) and (1,2,3) and are reported elsewhere [5-8].

Note carefully that this type of Coriolis acceleration, present in a
rigid molecule that is both rotating and translating, is not the same as the
well known Coriolis accelerations which appear in frame (x,y,z) from the
quantum theory of molecules that are vibrating and rotating. In that case the
Coriolis acceleration splits infra red spectral lines and is due to a
translational motion (bond vibration), superimposed on a rotating frame (that
of the rotating molecule's principal molecular moments of inertia for example,
or any other (e.g. principal polarisability) frame of reference). The fact
that vibration rotation Coriolis quantum effects appear in spectra is proof
of the existence of the Coriolis (quantum) acceleration in frame (x,y,z).

The essential difference between that type and the new type given in this paper
is that in vibration rotation the translation in the spinning laboratory frame

is due to bond vibration;in centre of mass translation/rotation as in this
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("zlassical") paper, the translation is that of the molecular centre of mass
itself.

Finally centripetal acceleration is a real linear acceleration in
frame (x,y,z) and can be seen to be so by a static obsevver in frame (x,y,z)
whenever a discus thrower releases the discus. Therefore there is no need
to be in a spinning frame of reference to observe the effects of the non
inertial accelerations. This is another common misconception. Coriolis
splitting in infra red spectra is obviously observed by the spectroscopist

in his own static frame (x,y,z}.
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